[gpaw-users] Changes in the new PAW setups bundle of 26/10 ("gpaw-setups-0.9.9672")
Marcin Dulak
Marcin.Dulak at fysik.dtu.dk
Fri Nov 23 18:31:11 CET 2012
Hi,
logs attached:
- Ag not converging rmm after 10 cg steps in pw mode (well, it's run
spin-polarized for the purpose of testing different Mixers),
- Ru not converging rmm,
- similar Ru with high energy p-projector not converging in pw mode,
- same Ru in grid mode,
I move the discussion to developers.
Marcin
On 11/23/12 17:10, Ask Hjorth Larsen wrote:
> Does anyone have any logfiles demonstrating any of this?
>
> 2012/11/23 Marcin Dulak <Marcin.Dulak at fysik.dtu.dk>:
>> On 11/23/12 16:01, Ask Hjorth Larsen wrote:
>>> Hi
>>>
>>> 2012/11/23 Marcin Dulak <Marcin.Dulak at fysik.dtu.dk>:
>>>> Hi,
>>>>
>>>>
>>>> On 11/23/12 15:03, Ask Hjorth Larsen wrote:
>>>>> Hi
>>>>>
>>>>> 2012/11/23 Marcin Dulak <Marcin.Dulak at fysik.dtu.dk>:
>>>>> (...)
>>>>>> A negative outcome from the way new setups are generated is that most
>>>>>> of
>>>>>> them require now eigensolver='cg' or 'dav' to achieve convergence.
>>>>>> The new Oxygen setup is also a bit harder, so requires finer grid.
>>>>>>
>>>>>> Best regards,
>>>>>>
>>>>>> Marcin
>>>>> This last part is rather unfortunate because cg and dav, compared to
>>>>> rmm-diis, reduce the performance of GPAW by a large factor for systems
>>>>> of non-trivial size. Furthermore those solvers don't support band
>>>>> parallelization AFAIK. What can be done about this?
>>>> i remember Jens Jørgen and your comments about that (old Ti setup case),
>>>> can you remind what was your conclusion?
>>>> The convergence problems seem to be related to the presence of semicore
>>>> p-states:
>>>>
>>>> https://listserv.fysik.dtu.dk/pipermail/gpaw-developers/2012-September/003190.html
>>> I don't think anything was concluded other than that it was nasty.
>>>
>>> I'm not sure that I have ever seen something that could not be fixed
>>> with rmm-diis by having a better initialization or adding more states.
>>>
>>> Presumably you have some calculations from which it is clear that
>>> neither of these helps. But it'll be a major blow if cg is needed as
>>> a default. I think it's well below half the performance of rmm-diis
>>> even when band parallelization is not needed. So something should be
>>> figured out. (Small molecules would of course be the exception because
>>> time is spent on XC/Poisson.)
>> in fact the link above shows
>> that starting with cg and switching to rmm (like vasp does) does not help
>> for those setups
>> (see Mixer() initial cg iter:10 on
>> https://wiki.fysik.dtu.dk/gpaw/documentation/convergence/scf_conv_eval.html#deltacodesdft),
>> but this has been done with "standard" rmm. I know Jussi is working
>> on https://wiki.fysik.dtu.dk/gpaw/devel/projects/rmmdiis.html
>> I have also tried to change the energies of the p-projectors (gpaw-setup
>> --extra-projectors),
>> they have some effect, but still no convergence possible with rmm.
>> It seems also that no mixers can help, after testing multitude of different
>> ones (including Jussi's FFTMixers).
>>
>> Marcin
>>
>>> Regards
>>> Ask
>>>
>>>
-------------- next part --------------
___ ___ ___ _ _ _
| | |_ | | | |
| | | | | . | | | |
|__ | _|___|_____| 0.9.1.9737
|___|_|
User: rpmbuild at q009.dcsc.fysik.dtu.dk
Date: Sat Nov 17 21:57:46 2012
Arch: x86_64
Pid: 11269
Dir: /home/camp/rpmbuild/gpaw-nightly-tests/agts/gpaw/gpaw
ase: /home/camp/rpmbuild/gpaw-nightly-tests/agts/ase/ase (version 3.6.1)
numpy: /opt/numpy/1.3.0/1.el5.fys.gfortran.4.1.2.python2.4.acml.4.0.1.acml.4.0.1/lib64/python2.4/site-packages/numpy (version 1.3.0)
units: Angstrom and eV
cores: 1
Extra parameters: {'fprojectors': 1}
Memory estimate
---------------
Process memory now: 44.03 MiB
Calculator 11.15 MiB
Density 2.96 MiB
Arrays 1.56 MiB
Localized functions 1.14 MiB
Mixer 0.27 MiB
Hamiltonian 1.18 MiB
Arrays 1.16 MiB
XC 0.00 MiB
Poisson 0.00 MiB
vbar 0.02 MiB
Wavefunctions 7.01 MiB
Arrays psit_nG 4.93 MiB
Eigensolver 0.70 MiB
Projectors 0.47 MiB
Overlap op 0.64 MiB
PW-descriptor 0.27 MiB
Positions:
0 Ag 0.0000 0.0000 0.0000
1 Ag 0.0000 2.0821 2.0821
2 Ag 2.0821 0.0000 2.0821
3 Ag 2.0821 2.0821 0.0000
Ag
Ag
Ag
Ag
Unit Cell:
Periodic X Y Z Points Spacing
--------------------------------------------------------------------
1. axis: yes 4.164240 0.000000 0.000000 18 0.2313
2. axis: yes 0.000000 4.164240 0.000000 18 0.2313
3. axis: yes 0.000000 0.000000 4.164240 18 0.2313
Ag-setup:
name : Silver
id : 33ddeab48f408598355e2011f1241e14
Z : 47
valence: 17
core : 30
charge : 0.0
file : /home/camp/rpmbuild/gpaw-nightly-tests/agts/gpaw/gpaw-setups/Ag.PBE.gz
cutoffs: 1.25(comp), 2.35(filt), 2.19(core), lmax=2
valence states:
energy radius
5s(1) -4.401 1.286
4p(6) -58.577 1.328
5p(0) -0.738 1.328
4d(10) -7.446 1.180
*s 22.811 1.286
*d 19.766 1.180
Using partial waves for Ag as LCAO basis
Using the PBE Exchange-Correlation Functional.
Spin-Polarized Calculation.
Magnetic Moment: (0.000000, 0.000000, 0.000000)
Total Charge: 0.000000
Fermi Temperature: 0.100000
Wave functions: Plane wave expansion
Cutoff energy: 340.000 eV
Number of coefficients (min, max): 1027, 1036
Using Numpy's FFT
Eigensolver: cg
XC and Coulomb potentials evaluated on a 36*36*36 grid
Interpolation: FFT
Poisson solver: FFT
Reference Energy: -578391.510130
Total number of cores used: 1
Symmetries present: 48
64 k-points: 4 x 4 x 4 Monkhorst-Pack grid
4 k-points in the Irreducible Part of the Brillouin Zone
Linear Mixing Parameter: 0.1
Pulay Mixing with 3 Old Densities
Damping of Long Wave Oscillations: 50
Convergence Criteria:
Total Energy Change: 0.0005 eV / electron
Integral of Absolute Density Change: 0.0001 electrons
Integral of Absolute Eigenstate Change: 4e-08 eV^2
Number of Atoms: 4
Number of Atomic Orbitals: 48
Number of Bands in Calculation: 39
Bands to Converge: Occupied States Only
Number of Valence Electrons: 68
log10-error: Total Iterations:
Time WFS Density Energy Fermi Poisson MagMom
iter: 1 21:57:58 +1.3 -11.369573 4 +0.0000
iter: 2 21:58:04 -0.6 -11.477891 3 +0.0000
iter: 3 21:58:12 -1.7 -11.499139 2 +0.0000
iter: 4 21:58:19 -1.1 -1.5 -11.076543 5 -0.0000
iter: 5 21:58:25 -0.2 -1.6 -10.621395 7 -0.0000
iter: 6 21:58:32 -1.5 -2.1 -10.610715 3 -0.0000
iter: 7 21:58:39 -2.2 -2.7 -10.598617 4 +0.0000
iter: 8 21:58:47 -3.1 -3.3 -10.598085 3 +0.0000
iter: 9 21:58:56 -3.6 -3.5 -10.598264 3 +0.0000
iter: 10 21:59:03 -3.5 -3.6 -10.598184 3 +0.0000
Memory estimate
---------------
Process memory now: 74.04 MiB
Calculator 11.15 MiB
Density 2.96 MiB
Arrays 1.56 MiB
Localized functions 1.14 MiB
Mixer 0.27 MiB
Hamiltonian 1.18 MiB
Arrays 1.16 MiB
XC 0.00 MiB
Poisson 0.00 MiB
vbar 0.02 MiB
Wavefunctions 7.01 MiB
Arrays psit_nG 4.93 MiB
Eigensolver 0.70 MiB
Projectors 0.47 MiB
Overlap op 0.64 MiB
PW-descriptor 0.27 MiB
Positions:
0 Ag 0.0000 0.0000 0.0000
1 Ag 0.0000 2.0821 2.0821
2 Ag 2.0821 0.0000 2.0821
3 Ag 2.0821 2.0821 0.0000
Ag
Ag
Ag
Ag
Unit Cell:
Periodic X Y Z Points Spacing
--------------------------------------------------------------------
1. axis: yes 4.164240 0.000000 0.000000 18 0.2313
2. axis: yes 0.000000 4.164240 0.000000 18 0.2313
3. axis: yes 0.000000 0.000000 4.164240 18 0.2313
Ag-setup:
name : Silver
id : 33ddeab48f408598355e2011f1241e14
Z : 47
valence: 17
core : 30
charge : 0.0
file : /home/camp/rpmbuild/gpaw-nightly-tests/agts/gpaw/gpaw-setups/Ag.PBE.gz
cutoffs: 1.25(comp), 2.35(filt), 2.19(core), lmax=2
valence states:
energy radius
5s(1) -4.401 1.286
4p(6) -58.577 1.328
5p(0) -0.738 1.328
4d(10) -7.446 1.180
*s 22.811 1.286
*d 19.766 1.180
Using partial waves for Ag as LCAO basis
Using the PBE Exchange-Correlation Functional.
Spin-Polarized Calculation.
Magnetic Moment: (0.000000, 0.000000, 0.000000)
Total Charge: 0.000000
Fermi Temperature: 0.100000
Wave functions: Plane wave expansion
Cutoff energy: 340.000 eV
Number of coefficients (min, max): 1027, 1036
Using Numpy's FFT
Eigensolver: rmm-diis
XC and Coulomb potentials evaluated on a 36*36*36 grid
Interpolation: FFT
Poisson solver: FFT
Reference Energy: -578391.510130
Total number of cores used: 1
Symmetries present: 48
64 k-points: 4 x 4 x 4 Monkhorst-Pack grid
4 k-points in the Irreducible Part of the Brillouin Zone
Linear Mixing Parameter: 0.1
Pulay Mixing with 3 Old Densities
Damping of Long Wave Oscillations: 50
Convergence Criteria:
Total Energy Change: 0.0005 eV / electron
Integral of Absolute Density Change: 0.0001 electrons
Integral of Absolute Eigenstate Change: 4e-08 eV^2
Number of Atoms: 4
Number of Atomic Orbitals: 48
Number of Bands in Calculation: 39
Bands to Converge: Occupied States Only
Number of Valence Electrons: 68
log10-error: Total Iterations:
Time WFS Density Energy Fermi Poisson MagMom
iter: 1 21:59:10 -3.6 -10.598215 3 -0.0000
iter: 2 21:59:12 -4.2 -10.598273 1 -0.0000
iter: 3 21:59:14 -4.3 -10.598285 1 -0.0000
iter: 4 21:59:18 -4.5 -3.9 -10.598258 2 -0.0000
iter: 5 21:59:21 -3.9 -3.9 -10.598156 3 +0.0000
iter: 6 21:59:25 -4.2 -4.6 -10.598177 2 +0.0000
iter: 7 21:59:29 -4.1 -4.7 -10.598165 2 +0.0000
iter: 8 21:59:33 -4.0 -5.2 -10.598161 2 +0.0000
iter: 9 21:59:37 -3.9 -5.3 -10.598154 2 +0.0000
iter: 10 21:59:41 -3.9 -5.5 -10.598146 2 +0.0000
iter: 11 21:59:44 -3.8 -5.7 -10.598139 2 +0.0000
iter: 12 21:59:48 -3.7 -5.6 -10.598129 2 +0.0000
iter: 13 21:59:52 -3.7 -5.4 -10.598120 2 +0.0000
iter: 14 21:59:56 -3.6 -5.0 -10.598107 2 +0.0000
iter: 15 22:00:00 -3.5 -4.8 -10.598093 1 +0.0000
iter: 16 22:00:03 -3.5 -4.7 -10.598076 2 +0.0000
iter: 17 22:00:07 -3.4 -4.5 -10.598056 2 +0.0000
iter: 18 22:00:11 -3.3 -4.5 -10.598034 2 +0.0000
iter: 19 22:00:15 -3.3 -4.3 -10.598003 2 +0.0000
iter: 20 22:00:19 -3.2 -4.3 -10.597981 2 +0.0000
iter: 21 22:00:23 -3.1 -4.2 -10.597940 2 +0.0000
iter: 22 22:00:26 -3.0 -4.2 -10.597886 2 +0.0000
iter: 23 22:00:30 -2.9 -4.2 -10.597813 2 -0.0001
iter: 24 22:00:34 -2.8 -4.4 -10.597753 2 +0.0001
iter: 25 22:00:38 -2.8 -4.3 -10.597730 2 +0.0000
iter: 26 22:00:42 -2.8 -4.9 -10.597672 2 +0.0000
iter: 27 22:00:45 -2.7 -4.8 -10.597610 2 +0.0000
iter: 28 22:00:49 -2.7 -4.6 -10.597528 2 -0.0000
iter: 29 22:00:53 -2.6 -4.7 -10.597444 2 +0.0000
iter: 30 22:00:57 -2.6 -4.5 -10.597356 2 -0.0000
iter: 31 22:01:01 -2.5 -4.2 -10.597218 2 +0.0000
iter: 32 22:01:05 -2.5 -4.6 -10.597106 2 -0.0000
iter: 33 22:01:08 -2.4 -4.3 -10.596959 2 +0.0001
iter: 34 22:01:12 -2.3 -4.2 -10.596749 2 +0.0001
iter: 35 22:01:16 -2.3 -4.7 -10.596557 2 +0.0001
iter: 36 22:01:20 -2.2 -4.7 -10.596357 2 +0.0001
iter: 37 22:01:24 -2.2 -4.8 -10.596121 2 +0.0001
iter: 38 22:01:27 -2.1 -4.8 -10.595842 2 +0.0001
iter: 39 22:01:31 -2.1 -4.8 -10.595516 2 +0.0002
iter: 40 22:01:35 -2.0 -4.8 -10.595152 2 +0.0001
iter: 41 22:01:39 -2.0 -4.7 -10.594722 2 +0.0001
iter: 42 22:01:43 -1.9 -4.6 -10.594222 2 +0.0002
iter: 43 22:01:47 -1.9 -4.4 -10.593642 2 +0.0001
iter: 44 22:01:50 -1.8 -4.2 -10.592943 2 +0.0002
iter: 45 22:01:54 -1.7 -4.3 -10.592149 2 +0.0002
iter: 46 22:01:58 -1.7 -4.2 -10.591217 2 +0.0001
iter: 47 22:02:02 -1.6 -4.1 -10.590167 2 +0.0001
iter: 48 22:02:06 -1.5 -3.9 -10.588829 2 +0.0003
iter: 49 22:02:10 -1.5 -4.1 -10.587317 2 +0.0004
iter: 50 22:02:13 -1.4 -4.5 -10.585615 2 +0.0005
iter: 51 22:02:17 -1.4 -4.7 -10.583665 2 +0.0005
iter: 52 22:02:21 -1.3 -4.7 -10.581362 2 +0.0004
iter: 53 22:02:25 -1.2 -4.4 -10.578623 2 +0.0005
iter: 54 22:02:29 -1.2 -4.5 -10.575433 2 +0.0005
iter: 55 22:02:32 -1.1 -4.3 -10.571693 2 +0.0005
iter: 56 22:02:36 -1.0 -4.0 -10.567272 2 +0.0004
iter: 57 22:02:40 -1.0 -3.9 -10.561972 3 +0.0006
iter: 58 22:02:44 -0.9 -4.1 -10.555889 2 +0.0006
iter: 59 22:02:48 -0.8 -3.9 -10.548628 3 +0.0007
iter: 60 22:02:52 -0.8 -4.3 -10.540258 2 +0.0008
iter: 61 22:02:55 -0.7 -4.2 -10.530392 2 +0.0008
iter: 62 22:02:59 -0.6 -4.1 -10.518822 2 +0.0007
iter: 63 22:03:03 -0.6 -3.8 -10.504944 3 +0.0008
iter: 64 22:03:07 -0.5 -4.0 -10.488802 2 +0.0007
iter: 65 22:03:11 -0.4 -3.7 -10.469560 2 +0.0009
iter: 66 22:03:14 -0.4 -3.9 -10.447163 3 +0.0008
iter: 67 22:03:18 -0.3 -3.6 -10.420279 3 +0.0011
iter: 68 22:03:22 -0.2 -4.0 -10.388951 2 +0.0011
iter: 69 22:03:26 -0.1 -4.1 -10.351989 2 +0.0012
iter: 70 22:03:30 -0.1 -4.1 -10.308366 2 +0.0011
iter: 71 22:03:34 -0.0 -4.1 -10.256889 3 +0.0012
iter: 72 22:03:37 +0.1 -3.6 -10.195330 3 +0.0013
iter: 73 22:03:41 +0.1 -3.7 -10.122532 3 +0.0011
iter: 74 22:03:45 +0.2 -3.9 -10.036587 3 +0.0011
iter: 75 22:03:49 +0.3 -4.1 -9.934837 2 +0.0010
iter: 76 22:03:53 +0.3 -4.0 -9.813958 3 +0.0014
iter: 77 22:03:56 +0.4 -3.9 -9.669982 2 +0.0014
iter: 78 22:04:00 +0.5 -3.7 -9.498543 2 +0.0014
iter: 79 22:04:04 +0.5 -3.6 -9.294183 2 +0.0017
iter: 80 22:04:08 +0.6 -3.6 -9.050380 2 +0.0015
iter: 81 22:04:12 +0.7 -3.5 -8.759564 3 +0.0010
iter: 82 22:04:16 +0.7 -3.3 -8.410902 2 +0.0021
iter: 83 22:04:19 +0.8 -3.3 -7.992289 3 +0.0002
iter: 84 22:04:23 +0.9 -3.3 -7.492364 3 +0.0017
iter: 85 22:04:27 +0.9 -3.4 -6.898660 3 +0.0003
iter: 86 22:04:31 +1.0 -3.4 -6.181322 3 -0.0008
iter: 87 22:04:35 +1.1 -3.4 -5.319644 3 +0.0026
iter: 88 22:04:39 +1.1 -3.4 -4.415934 5 +0.1754
iter: 89 22:04:42 +1.1 -2.6 -3.738077 4 -0.0004
iter: 90 22:04:46 +1.1 -2.4 -2.979754 2 +0.0014
iter: 91 22:04:50 +1.2 -2.4 -2.065263 2 +0.0110
iter: 92 22:04:54 +1.3 -2.4 -1.080498 3 -0.0145
iter: 93 22:04:58 +1.3 -2.4 -0.115568 4 -0.0036
iter: 94 22:05:02 +1.4 -2.3 0.753167 10 -0.0349
iter: 95 22:05:05 +1.5 -1.9 1.808777 6 -0.0164
iter: 96 22:05:09 +0.8 -2.1 2.176889 4 +0.0007
iter: 97 22:05:13 +0.8 -2.1 2.637771 2 +0.0048
iter: 98 22:05:17 +0.8 -2.1 3.146503 3 +0.0086
iter: 99 22:05:21 +0.9 -2.2 3.773927 4 -0.0021
iter: 100 22:05:24 +0.9 -2.2 4.513169 4 -0.0187
iter: 101 22:05:28 +1.0 -2.5 5.121082 5 -0.3606
iter: 102 22:05:32 +0.9 -2.3 5.667578 3 -0.3846
iter: 103 22:05:36 +0.9 -2.3 5.943625 7 -0.0052
iter: 104 22:05:40 +0.9 -2.1 6.403757 3 -0.0003
iter: 105 22:05:44 +0.9 -2.4 6.770996 2 -0.0003
iter: 106 22:05:47 +1.0 -2.5 7.227939 2 -0.0015
iter: 107 22:05:51 +1.1 -2.5 7.741339 2 -0.0012
iter: 108 22:05:55 +1.2 -2.6 8.324223 2 +0.0010
iter: 109 22:05:59 +1.3 -3.1 9.070832 2 +0.0019
iter: 110 22:06:03 +1.3 -3.1 9.969509 3 +0.0108
iter: 111 22:06:07 +1.4 -3.0 10.879599 7 +0.3631
iter: 112 22:06:10 +1.2 -2.3 11.547016 2 +0.3637
iter: 113 22:06:14 +1.2 -2.3 12.339721 2 +0.3664
iter: 114 22:06:18 +1.3 -2.3 12.927945 3 +0.0683
iter: 115 22:06:22 +0.8 -2.4 13.436008 3 +0.0159
iter: 116 22:06:26 +0.9 -2.4 13.917591 2 +0.0164
iter: 117 22:06:29 +0.9 -2.4 14.531653 2 -0.0091
iter: 118 22:06:33 +1.0 -2.6 15.238735 2 -0.0120
iter: 119 22:06:37 +1.0 -2.7 16.046197 3 -0.0080
iter: 120 22:06:41 +1.0 -2.8 17.008158 2 +0.0116
iter: 121 22:06:45 +1.1 -2.8 18.141797 2 +0.0346
iter: 122 22:06:49 +1.1 -2.8 19.415281 4 +0.3159
iter: 123 22:06:52 +1.1 -2.6 20.503009 4 +0.3945
iter: 124 22:06:56 +1.0 -2.3 21.131898 9 +0.3579
iter: 125 22:07:00 +0.8 -2.0 21.422031 3 +0.3554
iter: 126 22:07:04 +0.9 -2.0 21.780441 3 +0.3276
iter: 127 22:07:08 +0.9 -1.9 21.784691 3 +0.3882
iter: 128 22:07:11 +1.0 -2.0 22.904445 4 +0.4303
iter: 129 22:07:15 +1.1 -2.1 23.521816 3 +0.4076
iter: 130 22:07:19 +1.2 -2.3 24.103866 3 +0.3738
iter: 131 22:07:23 +1.2 -2.5 24.881428 3 +0.3595
iter: 132 22:07:27 +1.2 -2.6 25.691646 5 +0.5949
iter: 133 22:07:31 +1.2 -2.4 26.399597 4 +0.6034
iter: 134 22:07:34 +1.3 -2.4 27.230204 3 +0.6128
iter: 135 22:07:38 +1.4 -2.4 28.234150 3 +0.6609
iter: 136 22:07:42 +1.4 -2.5 29.461140 3 +0.8164
iter: 137 22:07:46 +1.1 -2.5 30.103292 5 +0.9796
iter: 138 22:07:50 +1.2 -2.2 30.846229 4 +0.9961
iter: 139 22:07:54 +1.3 -2.3 31.728543 3 +1.0064
iter: 140 22:07:57 +1.3 -2.3 32.825580 4 +1.0452
iter: 141 22:08:01 +1.4 -2.5 34.095044 4 +1.0667
iter: 142 22:08:05 +1.4 -2.4 35.493078 3 +1.0341
iter: 143 22:08:09 +1.4 -2.3 37.015103 3 +1.0607
iter: 144 22:08:13 +1.5 -2.2 38.702924 4 +1.2898
iter: 145 22:08:16 +1.4 -2.2 40.343741 4 +1.3953
iter: 146 22:08:20 +1.5 -2.2 42.130634 4 +1.4375
iter: 147 22:08:24 +1.5 -2.2 44.029352 16 +1.3738
iter: 148 22:08:28 +1.4 -2.1 45.793747 5 +1.0806
iter: 149 22:08:32 +1.4 -2.0 47.036238 3 +1.1280
iter: 150 22:08:36 +1.5 -2.1 48.368943 4 +1.0786
iter: 151 22:08:39 +1.5 -2.1 49.931269 3 +1.0774
iter: 152 22:08:43 +1.6 -2.0 51.353357 4 +0.9583
iter: 153 22:08:47 +1.5 -2.1 52.593322 3 +1.0001
iter: 154 22:08:51 +1.6 -2.1 54.189857 3 +0.9670
iter: 155 22:08:55 +1.6 -2.1 55.789295 3 +0.9840
iter: 156 22:08:58 +1.7 -2.1 57.634778 4 +1.0144
iter: 157 22:09:02 +1.7 -2.1 59.876034 6 +0.6307
iter: 158 22:09:06 +1.7 -2.0 61.626474 4 +0.5593
iter: 159 22:09:10 +1.7 -1.9 63.771860 4 +0.5257
iter: 160 22:09:14 +1.8 -1.9 66.655558 4 +0.4517
iter: 161 22:09:18 +1.9 -1.9 70.310896 2 +0.1795
iter: 162 22:09:21 +1.9 -2.1 73.096619 6 +0.1740
iter: 163 22:09:25 +1.9 -2.0 75.920048 6 +0.3060
iter: 164 22:09:29 +1.9 -2.0 79.092903 7 +0.4890
iter: 165 22:09:33 +1.9 -2.1 82.527586 9 +0.7532
iter: 166 22:09:37 +2.0 -2.2 86.332917 10 +0.7506
iter: 167 22:09:41 +2.0 -2.2 90.653300 15 +0.7500
iter: 168 22:09:44 +2.1 -2.1 95.664961 15 +0.7500
iter: 169 22:09:48 +2.1 -2.1 101.288708 18 +0.7500
iter: 170 22:09:52 +2.2 -2.1 107.886220 33 +0.7500
iter: 171 22:09:56 +2.2 -2.1 115.945663 34 +0.7501
iter: 172 22:10:00 +2.3 -2.1 125.346919 32 +0.7545
iter: 173 22:10:04 +2.3 -2.2 136.110298 35 +0.9929
iter: 174 22:10:07 +2.4 -2.0 147.599902 50 +0.7504
iter: 175 22:10:11 +2.4 -2.1 160.236325 32 +0.9930
iter: 176 22:10:15 +2.4 -1.9 172.935205 27 +1.4997
iter: 177 22:10:19 +2.4 -1.8 185.364842 36 +1.3363
iter: 178 22:10:23 +2.4 -1.8 198.010780 27 +1.2502
iter: 179 22:10:27 +2.5 -1.7 210.951483 13 +1.2497
iter: 180 22:10:30 +2.5 -1.8 224.828982 12 +0.7528
iter: 181 22:10:34 +2.5 -1.7 239.021908 11 +0.7500
iter: 182 22:10:38 +2.5 -1.8 253.129315 8 +0.7500
iter: 183 22:10:42 +2.5 -1.9 266.935319 6 +0.7500
iter: 184 22:10:46 +2.5 -1.9 280.339035 5 +0.7501
iter: 185 22:10:50 +2.5 -2.1 293.509687 6 +0.9961
iter: 186 22:10:53 +2.5 -2.1 307.112928 18 +1.0000
iter: 187 22:10:57 +2.5 -2.1 321.585639 15 +1.1781
iter: 188 22:11:01 +2.5 -2.0 335.261677 9 +1.2499
iter: 189 22:11:05 +2.5 -2.0 348.426761 15 +1.2502
iter: 190 22:11:09 +2.5 -1.9 361.149168 12 +1.2794
iter: 191 22:11:13 +2.5 -1.9 372.599290 10 +1.7865
iter: 192 22:11:16 +2.5 -1.9 384.190392 9 +1.7806
iter: 193 22:11:20 +2.5 -1.9 396.114036 11 +1.4969
iter: 194 22:11:24 +2.5 -1.8 406.595782 10 +1.3174
iter: 195 22:11:28 +2.5 -1.7 418.728316 11 +1.2501
iter: 196 22:11:32 +2.5 -1.8 431.064476 15 +1.2260
iter: 197 22:11:35 +2.5 -1.9 442.329905 13 +1.0143
iter: 198 22:11:39 +2.5 -1.8 455.035855 16 +0.9775
iter: 199 22:11:43 +2.5 -1.9 467.254907 15 +0.9194
iter: 200 22:11:47 +2.5 -1.9 479.581022 6 +0.9253
iter: 201 22:11:51 +2.5 -1.8 493.342533 15 +1.0308
iter: 202 22:11:55 +2.5 -1.8 507.059319 9 +1.2486
iter: 203 22:11:58 +2.5 -1.7 520.958228 14 +1.2508
iter: 204 22:12:02 +2.5 -1.8 534.888880 11 +1.2504
iter: 205 22:12:06 +2.5 -1.8 548.386868 11 +1.2504
iter: 206 22:12:10 +2.5 -1.7 561.438179 9 +1.2502
iter: 207 22:12:14 +2.5 -1.6 573.665258 10 +1.2501
iter: 208 22:12:18 +2.5 -1.7 586.063349 5 +1.0225
iter: 209 22:12:21 +2.6 -1.9 597.617313 8 +1.0000
iter: 210 22:12:25 +2.6 -1.8 611.597560 9 +1.0000
iter: 211 22:12:29 +2.6 -2.0 626.388553 15 +1.0000
iter: 212 22:12:33 +2.6 -2.0 639.126418 4 +1.0000
iter: 213 22:12:37 +2.6 -2.1 653.714680 8 +1.0000
iter: 214 22:12:40 +2.6 -2.1 668.141007 9 +1.0000
iter: 215 22:12:44 +2.6 -2.0 684.400742 10 +1.0000
iter: 216 22:12:48 +2.6 -1.8 696.384882 7 +0.9998
iter: 217 22:12:52 +2.6 -2.0 709.602443 10 +0.9990
iter: 218 22:12:56 +2.6 -2.0 724.565703 12 +0.9906
iter: 219 22:13:00 +2.6 -2.0 740.217196 16 +0.7901
iter: 220 22:13:03 +2.6 -2.0 753.143300 10 +0.7817
iter: 221 22:13:07 +2.6 -1.9 766.114414 10 +0.9088
iter: 222 22:13:11 +2.6 -2.0 779.794442 11 +0.9203
iter: 223 22:13:15 +2.6 -2.0 793.970068 11 +0.8457
iter: 224 22:13:19 +2.6 -2.3 808.773599 11 +1.0473
iter: 225 22:13:23 +2.6 -2.2 825.098157 10 +0.9566
iter: 226 22:13:26 +2.6 -2.1 844.134424 10 +0.9940
iter: 227 22:13:30 +2.6 -2.1 863.327685 6 +1.0037
iter: 228 22:13:34 +2.6 -2.0 877.674883 8 +1.0107
iter: 229 22:13:38 +2.6 -1.9 892.223040 11 +1.0443
iter: 230 22:13:42 +2.6 -1.9 906.510235 11 +1.1193
iter: 231 22:13:45 +2.6 -1.9 920.670338 8 +1.2415
iter: 232 22:13:49 +2.6 -1.9 934.767642 11 +1.2973
iter: 233 22:13:53 +2.6 -2.0 948.786698 11 +1.2614
iter: 234 22:13:57 +2.6 -2.1 963.112225 9 +1.4121
iter: 235 22:14:01 +2.7 -2.0 977.992838 8 +1.5189
iter: 236 22:14:05 +2.7 -2.0 993.245023 9 +1.7703
iter: 237 22:14:08 +2.7 -1.8 1009.860430 12 +1.8700
iter: 238 22:14:12 +2.7 -1.9 1027.523314 11 +1.9739
iter: 239 22:14:16 +2.7 -1.9 1048.388070 13 +1.9953
iter: 240 22:14:20 +2.7 -2.0 1070.727076 13 +1.9999
iter: 241 22:14:24 +2.7 -1.9 1089.618808 13 +2.0000
iter: 242 22:14:28 +2.7 -2.0 1108.235406 13 +2.0000
iter: 243 22:14:31 +2.7 -2.0 1126.599747 9 +2.0000
iter: 244 22:14:35 +2.7 -2.0 1146.081543 8 +2.0000
iter: 245 22:14:39 +2.7 -2.1 1167.186595 7 +2.0000
iter: 246 22:14:43 +2.7 -2.2 1186.075754 9 +2.0000
iter: 247 22:14:47 +2.7 -2.2 1204.226270 12 +1.9999
iter: 248 22:14:51 +2.7 -2.2 1222.484892 15 +1.9997
iter: 249 22:14:54 +2.8 -2.2 1240.969188 10 +2.0000
iter: 250 22:14:58 +2.8 -2.1 1259.656200 9 +2.0000
iter: 251 22:15:02 +2.8 -2.1 1278.653451 7 +2.0018
iter: 252 22:15:06 +2.8 -2.0 1298.893436 7 +2.3089
iter: 253 22:15:10 +2.8 -2.1 1321.220407 13 +2.4977
iter: 254 22:15:13 +2.8 -1.9 1342.874830 13 +2.5000
iter: 255 22:15:17 +2.8 -1.9 1364.915225 12 +2.5000
iter: 256 22:15:21 +2.8 -1.9 1388.020242 12 +2.5000
iter: 257 22:15:25 +2.8 -1.9 1412.474282 14 +2.5000
iter: 258 22:15:29 +2.8 -2.0 1438.999813 16 +2.5000
iter: 259 22:15:33 +2.9 -2.0 1466.820666 14 +2.5000
iter: 260 22:15:36 +2.9 -2.0 1495.703048 15 +2.5000
iter: 261 22:15:40 +2.9 -1.8 1525.774699 16 +2.5000
iter: 262 22:15:44 +2.9 -1.9 1556.926827 13 +2.5000
iter: 263 22:15:48 +2.9 -1.8 1590.072839 19 +2.5000
iter: 264 22:15:52 +2.9 -1.7 1621.499428 12 +2.5000
iter: 265 22:15:56 +2.9 -1.6 1655.222803 14 +2.5000
iter: 266 22:15:59 +2.9 -1.7 1693.786675 22 +2.5000
iter: 267 22:16:03 +2.9 -1.7 1732.014604 13 +2.5000
iter: 268 22:16:07 +2.9 -1.7 1770.770174 18 +2.5000
iter: 269 22:16:11 +2.9 -1.7 1808.355617 18 +2.5000
iter: 270 22:16:15 +2.9 -1.6 1839.758384 10 +2.5000
iter: 271 22:16:19 +2.9 -1.7 1870.701263 19 +2.5000
iter: 272 22:16:22 +2.9 -1.7 1897.982691 13 +2.5000
iter: 273 22:16:26 +2.9 -1.7 1926.852342 20 +2.5000
iter: 274 22:16:30 +2.9 -1.7 1953.904688 17 +2.5000
iter: 275 22:16:34 +2.9 -1.7 1979.441196 9 +2.5000
iter: 276 22:16:38 +2.9 -1.7 2008.094679 20 +2.5000
iter: 277 22:16:41 +2.9 -1.6 2033.473133 13 +2.5000
iter: 278 22:16:45 +2.9 -1.6 2058.308489 11 +2.5000
iter: 279 22:16:49 +3.0 -1.7 2086.194015 18 +2.5000
iter: 280 22:16:53 +3.0 -1.6 2112.649894 11 +2.5000
iter: 281 22:16:57 +3.0 -1.6 2142.597360 17 +2.5000
iter: 282 22:17:01 +3.0 -1.6 2173.649602 19 +2.5000
iter: 283 22:17:04 +3.0 -1.5 2204.683059 6 +2.5000
iter: 284 22:17:08 +3.0 -1.5 2237.245635 20 +2.5000
iter: 285 22:17:12 +3.0 -1.5 2268.926285 15 +2.5000
iter: 286 22:17:16 +3.0 -1.5 2297.547337 9 +2.5000
iter: 287 22:17:20 +3.0 -1.5 2331.008281 34 +2.4813
iter: 288 22:17:24 +3.0 -1.4 2359.677047 9 +2.4981
iter: 289 22:17:27 +3.0 -1.4 2388.718123 20 +2.3239
iter: 290 22:17:31 +3.0 -1.5 2417.208666 7 +2.4724
iter: 291 22:17:35 +3.0 -1.7 2447.184535 17 +2.2937
iter: 292 22:17:39 +3.0 -1.7 2477.271823 16 +2.2501
iter: 293 22:17:43 +3.0 -1.9 2507.102056 15 +2.2500
iter: 294 22:17:47 +3.0 -2.1 2537.075801 14 +2.2500
iter: 295 22:17:50 +3.0 -2.3 2567.641649 15 +2.2500
iter: 296 22:17:54 +3.0 -2.4 2598.244689 15 +2.2500
iter: 297 22:17:58 +3.1 -2.4 2629.071033 15 +2.2500
iter: 298 22:18:02 +3.1 -2.2 2660.146318 16 +2.2500
iter: 299 22:18:06 +3.1 -2.1 2691.476787 15 +2.2500
iter: 300 22:18:09 +3.1 -2.1 2723.019444 18 +2.2500
iter: 301 22:18:13 +3.1 -1.9 2755.286704 20 +2.2500
iter: 302 22:18:17 +3.1 -1.8 2788.428982 17 +2.2500
iter: 303 22:18:21 +3.1 -1.9 2821.799414 18 +2.2500
iter: 304 22:18:25 +3.1 -1.9 2856.436690 10 +2.2500
iter: 305 22:18:29 +3.1 -1.6 2890.661921 20 +2.2500
iter: 306 22:18:32 +3.1 -1.8 2923.977599 27 +2.2500
iter: 307 22:18:36 +3.1 -1.8 2958.580979 10 +2.2516
iter: 308 22:18:40 +3.1 -2.0 2993.418435 17 +2.2845
iter: 309 22:18:44 +3.1 -2.0 3028.568292 6 +2.4799
iter: 310 22:18:48 +3.1 -2.0 3065.337140 23 +2.4863
iter: 311 22:18:52 +3.1 -1.9 3101.018207 9 +2.5000
iter: 312 22:18:55 +3.1 -2.0 3138.258546 17 +2.5000
iter: 313 22:18:59 +3.1 -2.0 3174.109884 18 +2.5000
iter: 314 22:19:03 +3.1 -1.9 3210.164245 11 +2.5000
iter: 315 22:19:07 +3.1 -2.0 3246.216374 19 +2.5000
iter: 316 22:19:11 +3.1 -1.8 3283.408946 9 +2.5000
iter: 317 22:19:15 +3.1 -1.9 3320.486372 19 +2.5000
iter: 318 22:19:18 +3.1 -1.8 3356.637460 15 +2.5000
iter: 319 22:19:22 +3.1 -1.7 3393.661439 11 +2.5000
iter: 320 22:19:26 +3.1 -1.7 3430.112579 16 +2.5000
iter: 321 22:19:30 +3.1 -1.7 3467.214736 11 +2.5000
iter: 322 22:19:34 +3.1 -1.7 3504.752458 11 +2.5000
iter: 323 22:19:38 +3.1 -1.6 3540.506758 12 +2.5000
iter: 324 22:19:41 +3.1 -1.7 3576.371931 20 +2.5000
iter: 325 22:19:45 +3.1 -1.6 3611.726526 11 +2.5000
iter: 326 22:19:49 +3.1 -1.9 3647.299271 11 +2.5000
iter: 327 22:19:53 +3.1 -2.1 3683.735127 15 +2.5000
iter: 328 22:19:57 +3.1 -2.1 3720.166657 15 +2.5000
iter: 329 22:20:00 +3.1 -2.1 3755.952934 14 +2.5000
iter: 330 22:20:04 +3.1 -2.0 3791.576801 16 +2.5000
iter: 331 22:20:08 +3.2 -1.9 3826.782528 13 +2.5000
iter: 332 22:20:12 +3.2 -2.0 3862.582922 14 +2.5000
iter: 333 22:20:16 +3.2 -2.0 3897.233338 13 +2.5000
iter: 334 22:20:20 +3.2 -1.9 3932.350824 13 +2.5000
iter: 335 22:20:23 +3.2 -1.9 3968.520232 12 +2.4999
iter: 336 22:20:27 +3.2 -1.8 4005.436146 16 +2.4990
iter: 337 22:20:31 +3.2 -1.6 4043.824192 9 +2.4705
iter: 338 22:20:35 +3.2 -1.7 4083.556729 14 +2.4533
iter: 339 22:20:39 +3.2 -1.6 4124.697019 11 +2.2781
iter: 340 22:20:43 +3.2 -1.7 4162.787259 13 +2.0161
iter: 341 22:20:46 +3.2 -1.7 4200.951062 13 +1.8241
iter: 342 22:20:50 +3.2 -1.6 4239.290892 15 +1.7815
iter: 343 22:20:54 +3.2 -1.5 4279.201100 9 +1.7536
iter: 344 22:20:58 +3.2 -1.6 4320.015974 9 +1.7500
iter: 345 22:21:02 +3.2 -1.6 4359.711431 11 +1.7500
iter: 346 22:21:06 +3.2 -1.6 4401.343139 6 +1.7500
iter: 347 22:21:09 +3.2 -1.8 4441.863568 17 +1.7500
iter: 348 22:21:13 +3.2 -1.8 4478.801493 5 +1.7500
iter: 349 22:21:17 +3.2 -2.0 4514.715609 12 +1.7500
iter: 350 22:21:21 +3.2 -1.9 4550.517650 10 +1.7500
iter: 351 22:21:25 +3.2 -2.0 4587.069163 12 +1.7500
iter: 352 22:21:28 +3.2 -1.8 4623.235161 9 +1.7500
iter: 353 22:21:32 +3.2 -1.9 4658.864615 10 +1.7500
iter: 354 22:21:36 +3.2 -1.8 4693.851161 9 +1.7500
iter: 355 22:21:40 +3.2 -2.0 4728.981862 8 +1.7500
iter: 356 22:21:44 +3.2 -2.0 4763.918365 10 +1.7500
iter: 357 22:21:48 +3.2 -2.1 4797.645733 11 +1.7500
iter: 358 22:21:51 +3.2 -2.1 4830.066822 10 +1.7500
iter: 359 22:21:55 +3.2 -2.1 4861.645834 10 +1.7501
iter: 360 22:21:59 +3.2 -2.1 4893.009441 10 +1.7503
iter: 361 22:22:03 +3.2 -2.1 4924.060932 10 +1.7522
iter: 362 22:22:07 +3.2 -2.1 4955.092879 8 +1.7522
iter: 363 22:22:11 +3.2 -2.1 4985.929721 10 +1.7565
iter: 364 22:22:14 +3.2 -2.0 5016.697595 9 +1.7819
iter: 365 22:22:18 +3.2 -1.9 5047.383346 9 +1.8517
iter: 366 22:22:22 +3.2 -1.9 5077.802334 10 +1.9337
iter: 367 22:22:26 +3.2 -1.8 5108.269485 10 +1.9596
iter: 368 22:22:30 +3.2 -1.9 5138.707440 11 +1.9386
iter: 369 22:22:34 +3.2 -1.9 5169.299958 9 +1.9270
iter: 370 22:22:37 +3.2 -1.8 5199.640798 10 +1.8476
iter: 371 22:22:41 +3.2 -1.7 5230.100506 10 +1.8970
iter: 372 22:22:45 +3.2 -1.9 5260.829916 9 +1.8953
iter: 373 22:22:49 +3.2 -1.8 5291.114848 11 +1.7987
iter: 374 22:22:53 +3.2 -1.6 5322.687313 5 +1.8966
iter: 375 22:22:56 +3.2 -1.7 5353.120954 10 +1.9414
iter: 376 22:23:00 +3.2 -1.9 5384.161142 7 +1.9832
iter: 377 22:23:04 +3.2 -1.9 5414.961954 9 +1.9882
iter: 378 22:23:08 +3.2 -1.8 5445.781851 9 +1.9945
iter: 379 22:23:12 +3.2 -2.0 5476.475941 9 +1.9947
iter: 380 22:23:16 +3.2 -2.2 5507.131313 8 +1.9979
iter: 381 22:23:19 +3.2 -2.2 5537.846457 10 +1.9978
iter: 382 22:23:23 +3.2 -2.3 5568.549976 7 +1.9972
iter: 383 22:23:27 +3.2 -2.4 5599.295697 10 +1.9976
iter: 384 22:23:31 +3.2 -2.5 5630.050063 9 +1.9973
iter: 385 22:23:35 +3.2 -2.3 5660.808243 10 +1.9978
iter: 386 22:23:39 +3.2 -2.3 5691.676571 10 +1.9980
iter: 387 22:23:42 +3.2 -2.2 5722.627843 10 +1.9983
iter: 388 22:23:46 +3.2 -2.1 5753.742642 10 +1.9986
iter: 389 22:23:50 +3.2 -2.0 5785.065916 10 +1.9988
iter: 390 22:23:54 +3.2 -1.9 5816.705419 10 +1.9991
iter: 391 22:23:58 +3.2 -1.9 5848.887759 10 +1.9994
iter: 392 22:24:02 +3.2 -1.8 5882.149432 8 +1.9996
iter: 393 22:24:05 +3.2 -2.0 5916.774611 10 +1.9997
iter: 394 22:24:09 +3.2 -2.0 5948.927799 6 +1.9996
iter: 395 22:24:13 +3.2 -2.3 5979.323484 10 +1.9998
iter: 396 22:24:17 +3.2 -2.3 6009.815170 9 +1.9998
iter: 397 22:24:21 +3.2 -2.4 6040.132074 9 +1.9999
iter: 398 22:24:24 +3.2 -2.3 6070.429445 9 +1.9999
iter: 399 22:24:28 +3.2 -2.3 6100.607864 9 +2.0000
iter: 400 22:24:32 +3.2 -2.2 6130.755140 8 +2.0000
iter: 401 22:24:36 +3.2 -2.2 6160.851706 9 +2.0000
iter: 402 22:24:40 +3.2 -2.0 6190.876624 9 +2.0000
iter: 403 22:24:44 +3.2 -1.8 6220.945602 7 +2.0000
iter: 404 22:24:47 +3.2 -2.0 6251.090494 8 +2.0000
iter: 405 22:24:51 +3.2 -1.8 6280.853499 10 +2.0000
iter: 406 22:24:55 +3.2 -2.0 6310.669605 8 +2.0000
iter: 407 22:24:59 +3.2 -1.9 6340.296338 9 +2.0000
iter: 408 22:25:03 +3.2 -1.7 6369.987383 9 +2.0000
iter: 409 22:25:07 +3.2 -1.9 6399.741360 7 +2.0000
iter: 410 22:25:10 +3.2 -1.9 6429.213182 10 +2.0000
iter: 411 22:25:14 +3.2 -1.8 6458.764485 5 +2.0000
iter: 412 22:25:18 +3.2 -1.8 6487.874902 10 +2.0000
iter: 413 22:25:22 +3.2 -1.7 6517.806755 6 +2.0000
iter: 414 22:25:26 +3.2 -1.9 6547.209615 7 +1.9999
iter: 415 22:25:30 +3.2 -2.0 6576.545662 6 +1.9993
iter: 416 22:25:33 +3.2 -2.1 6605.771053 7 +1.9963
iter: 417 22:25:37 +3.2 -2.1 6635.088359 9 +1.9922
iter: 418 22:25:41 +3.2 -1.9 6664.544234 8 +1.9573
iter: 419 22:25:45 +3.2 -2.3 6693.918671 9 +1.9076
iter: 420 22:25:49 +3.2 -2.2 6723.558361 9 +1.7932
iter: 421 22:25:52 +3.2 -2.1 6753.387832 8 +1.7529
iter: 422 22:25:56 +3.2 -2.0 6783.946990 8 +1.7504
iter: 423 22:26:00 +3.2 -2.0 6816.134639 6 +1.7500
iter: 424 22:26:04 +3.2 -1.9 6850.399918 8 +1.7500
iter: 425 22:26:08 +3.2 -2.0 6879.771007 8 +1.7500
iter: 426 22:26:12 +3.2 -1.8 6908.866304 6 +1.7503
iter: 427 22:26:15 +3.2 -2.1 6937.588111 7 +1.7510
iter: 428 22:26:19 +3.2 -2.3 6966.452467 6 +1.7522
iter: 429 22:26:23 +3.2 -2.4 6995.492947 6 +1.7536
iter: 430 22:26:27 +3.2 -2.3 7025.095389 7 +1.7525
iter: 431 22:26:31 +3.2 -2.3 7056.148588 7 +1.7501
iter: 432 22:26:35 +3.2 -2.2 7089.904389 7 +1.7363
iter: 433 22:26:38 +3.2 -2.1 7120.304667 7 +1.6668
iter: 434 22:26:42 +3.2 -2.1 7148.185836 5 +1.6187
iter: 435 22:26:46 +3.2 -2.2 7175.778383 7 +1.5591
iter: 436 22:26:50 +3.2 -2.1 7203.275953 6 +1.5466
iter: 437 22:26:54 +3.2 -2.2 7230.375695 6 +1.5029
iter: 438 22:26:57 +3.2 -2.0 7257.707240 6 +1.5110
iter: 439 22:27:01 +3.2 -2.1 7284.856070 5 +1.5563
iter: 440 22:27:05 +3.2 -2.3 7311.788247 6 +1.5422
iter: 441 22:27:09 +3.2 -2.3 7338.573672 7 +1.5036
iter: 442 22:27:13 +3.2 -2.2 7365.240096 7 +1.4354
iter: 443 22:27:17 +3.2 -2.2 7391.723881 7 +1.3783
iter: 444 22:27:20 +3.2 -2.2 7418.187602 6 +1.3679
iter: 445 22:27:24 +3.2 -2.1 7444.318155 6 +1.3675
iter: 446 22:27:28 +3.2 -1.8 7470.678183 5 +1.3529
iter: 447 22:27:32 +3.2 -1.9 7496.919807 5 +1.3782
iter: 448 22:27:36 +3.2 -2.1 7523.059569 4 +1.3764
iter: 449 22:27:40 +3.2 -2.3 7549.030316 5 +1.3916
iter: 450 22:27:43 +3.2 -2.3 7574.958207 5 +1.3687
iter: 451 22:27:47 +3.2 -2.3 7600.737917 5 +1.4089
iter: 452 22:27:51 +3.2 -2.5 7626.494254 5 +1.4193
iter: 453 22:27:55 +3.2 -2.4 7652.211510 5 +1.4459
iter: 454 22:27:59 +3.2 -2.5 7678.086748 6 +1.4659
iter: 455 22:28:02 +3.2 -2.4 7704.831284 5 +1.4792
iter: 456 22:28:06 +3.2 -2.3 7732.014224 6 +1.4872
iter: 457 22:28:10 +3.2 -2.2 7757.297893 6 +1.4910
iter: 458 22:28:14 +3.2 -2.1 7782.655436 5 +1.4935
iter: 459 22:28:18 +3.2 -2.1 7808.173711 5 +1.4958
iter: 460 22:28:22 +3.2 -2.1 7834.340454 5 +1.4957
iter: 461 22:28:25 +3.2 -2.1 7863.162174 5 +1.4919
iter: 462 22:28:29 +3.2 -2.0 7891.294046 5 +1.4957
iter: 463 22:28:33 +3.2 -1.9 7916.105247 5 +1.4928
iter: 464 22:28:37 +3.2 -2.0 7940.729824 5 +1.4885
iter: 465 22:28:41 +3.2 -2.0 7965.255839 7 +1.4080
iter: 466 22:28:45 +3.2 -1.9 7990.350540 6 +1.4106
iter: 467 22:28:48 +3.1 -1.8 8017.631065 5 +1.3531
iter: 468 22:28:52 +3.1 -1.8 8041.438124 6 +1.2650
iter: 469 22:28:56 +3.1 -1.8 8065.181581 5 +1.2568
iter: 470 22:29:00 +3.1 -1.8 8088.663123 8 +1.1242
iter: 471 22:29:04 +3.1 -1.7 8112.015457 2 +1.0039
iter: 472 22:29:07 +3.1 -1.9 8135.329986 5 +1.0049
iter: 473 22:29:11 +3.1 -1.9 8158.401525 6 +1.0101
iter: 474 22:29:15 +3.1 -1.9 8181.378241 6 +1.0203
iter: 475 22:29:19 +3.1 -1.9 8204.318580 5 +1.0703
iter: 476 22:29:23 +3.1 -2.2 8227.151629 5 +1.1635
iter: 477 22:29:27 +3.1 -2.3 8249.825145 5 +1.2154
iter: 478 22:29:30 +3.1 -2.5 8272.368929 6 +1.2339
iter: 479 22:29:34 +3.1 -2.4 8294.821625 6 +1.2106
iter: 480 22:29:38 +3.1 -2.4 8317.131102 6 +1.0348
iter: 481 22:29:42 +3.1 -2.3 8339.154310 6 +0.9980
iter: 482 22:29:46 +3.1 -2.2 8360.987633 6 +1.0030
iter: 483 22:29:50 +3.1 -2.1 8382.707601 6 +1.0265
iter: 484 22:29:53 +3.1 -2.1 8404.329591 5 +1.0997
iter: 485 22:29:57 +3.1 -2.1 8425.818768 6 +1.2085
iter: 486 22:30:01 +3.1 -2.1 8447.159080 7 +1.2410
iter: 487 22:30:05 +3.1 -2.1 8468.432141 6 +1.2460
iter: 488 22:30:09 +3.1 -2.0 8489.620860 6 +1.2476
iter: 489 22:30:12 +3.1 -2.0 8510.777558 5 +1.2485
iter: 490 22:30:16 +3.1 -2.1 8531.738370 6 +1.2487
iter: 491 22:30:20 +3.1 -2.4 8552.464370 6 +1.2486
iter: 492 22:30:24 +3.1 -2.3 8573.136932 5 +1.2495
iter: 493 22:30:28 +3.1 -2.5 8593.591590 6 +1.2513
iter: 494 22:30:32 +3.1 -2.5 8614.014455 5 +1.2577
iter: 495 22:30:35 +3.1 -2.5 8634.268422 5 +1.2746
iter: 496 22:30:39 +3.1 -2.3 8654.418404 6 +1.3172
iter: 497 22:30:43 +3.1 -2.2 8674.458486 6 +1.3948
iter: 498 22:30:47 +3.1 -2.2 8694.325042 6 +1.4627
iter: 499 22:30:51 +3.1 -1.9 8714.258291 4 +1.5814
iter: 500 22:30:55 +3.1 -2.1 8733.906466 4 +1.6663
Memory usage: 74.16 MB
============================================================
Timing: incl. excl.
============================================================
Initialization: 9.252 2.777 0.1% |
Hamiltonian: 2.690 0.067 0.0% |
Atomic: 2.364 0.003 0.0% |
XC Correction: 2.362 2.362 0.1% |
Communicate energies: 0.000 0.000 0.0% |
Initialize Hamiltonian: 0.000 0.000 0.0% |
Poisson: 0.001 0.001 0.0% |
XC 3D grid: 0.258 0.258 0.0% |
LCAO initialization: 3.667 0.183 0.0% |
LCAO eigensolver: 1.629 0.001 0.0% |
Atomic Hamiltonian: 0.005 0.005 0.0% |
Calculate projections: 0.003 0.003 0.0% |
Distribute overlap matrix: 0.001 0.001 0.0% |
Orbital Layouts: 0.018 0.018 0.0% |
Potential matrix: 1.575 1.575 0.1% |
Sum over cells: 0.026 0.026 0.0% |
LCAO to grid: 0.739 0.739 0.0% |
Set positions (LCAO WFS): 1.115 0.000 0.0% |
Basic WFS set positions: 0.007 0.007 0.0% |
Basis functions set positions: 0.000 0.000 0.0% |
TCI: Calculate S, T, P: 1.108 1.108 0.1% |
PWDescriptor: 0.014 0.014 0.0% |
Redistribute: 0.000 0.000 0.0% |
Symmetrize density: 0.104 0.104 0.0% |
SCF-cycle: 1981.452 3.430 0.2% |
CG: 48.609 44.547 2.2% ||
CG: orthonormalize: 4.062 2.022 0.1% |
CG: overlap: 1.449 1.449 0.1% |
CG: overlap2: 0.591 0.591 0.0% |
Density: 258.341 0.016 0.0% |
Atomic density matrices: 7.801 7.801 0.4% |
Mix: 24.858 24.858 1.2% |
Multipole moments: 0.056 0.056 0.0% |
Pseudo density: 225.609 172.807 8.7% |--|
Symmetrize density: 52.802 52.802 2.7% ||
Hamiltonian: 752.516 16.137 0.8% |
Atomic: 661.650 0.668 0.0% |
XC Correction: 660.982 660.982 33.2% |------------|
Communicate energies: 0.009 0.009 0.0% |
Poisson: 0.321 0.321 0.0% |
XC 3D grid: 74.399 74.399 3.7% ||
Orthonormalize: 70.515 0.337 0.0% |
Band Layouts: 0.800 0.055 0.0% |
Inverse Cholesky: 0.746 0.746 0.0% |
calc_s_matrix: 17.207 17.207 0.9% |
projections: 36.816 36.816 1.8% ||
rotate_psi: 15.355 15.355 0.8% |
RMM-DIIS: 537.785 400.208 20.1% |-------|
precondition: 60.348 60.348 3.0% ||
projections: 77.230 77.230 3.9% |-|
Residuals: 0.798 0.798 0.0% |
Subspace diag: 309.458 0.683 0.0% |
Band Layouts: 4.055 0.100 0.0% |
Diagonalize: 3.848 3.848 0.2% |
Distribute results: 0.107 0.107 0.0% |
calc_h_matrix: 274.754 274.754 13.8% |-----|
rotate_psi: 29.967 29.967 1.5% ||
Other: 0.048 0.048 0.0% |
============================================================
Total: 1990.752 100.0%
============================================================
date: Sat Nov 17 22:30:57 2012
-------------- next part --------------
___ ___ ___ _ _ _
| | |_ | | | |
| | | | | . | | | |
|__ | _|___|_____| 0.9.1.9737
|___|_|
User: rpmbuild at q097.dcsc.fysik.dtu.dk
Date: Sun Nov 18 00:19:10 2012
Arch: x86_64
Pid: 11480
Dir: /home/camp/rpmbuild/gpaw-nightly-tests/agts/gpaw/gpaw
ase: /home/camp/rpmbuild/gpaw-nightly-tests/agts/ase/ase (version 3.6.1)
numpy: /opt/numpy/1.3.0/1.el5.fys.gfortran.4.1.2.python2.4.acml.4.0.1.acml.4.0.1/lib64/python2.4/site-packages/numpy (version 1.3.0)
units: Angstrom and eV
cores: 1
Extra parameters: {'fprojectors': 1}
Memory estimate
---------------
Process memory now: 140.47 MiB
Calculator 21.14 MiB
Density 0.83 MiB
Arrays 0.48 MiB
Localized functions 0.27 MiB
Mixer 0.08 MiB
Hamiltonian 0.36 MiB
Arrays 0.36 MiB
XC 0.00 MiB
Poisson 0.00 MiB
vbar 0.01 MiB
Wavefunctions 19.94 MiB
Arrays psit_nG 16.41 MiB
Eigensolver 0.16 MiB
Projectors 2.89 MiB
Overlap op 0.13 MiB
PW-descriptor 0.36 MiB
Positions:
0 Ru 0.0000 0.0000 0.0000
1 Ru 1.3633 0.7871 2.1503
Ru
Ru
Unit Cell:
Periodic X Y Z Points Spacing
--------------------------------------------------------------------
1. axis: yes 2.726610 0.000000 0.000000 10 0.2361
2. axis: yes 1.363305 2.361314 0.000000 10 0.2361
3. axis: yes 0.000000 0.000000 4.300500 18 0.2389
Ru-setup:
name : Ruthenium
id : 670232e5f51aeb2542f664849653fb2d
Z : 44
valence: 16
core : 28
charge : 0.0
file : /home/camp/rpmbuild/gpaw-nightly-tests/agts/gpaw/gpaw-setups/Ru.PBE.gz
cutoffs: 1.23(comp), 2.16(filt), 1.30(core), lmax=2
valence states:
energy radius
4s(2) -76.316 1.281
5s(1) -4.236 1.281
4p(6) -46.423 1.286
5p(0) -0.913 1.286
4d(7) -5.203 1.254
*d 22.008 1.254
Using partial waves for Ru as LCAO basis
Using the PBE Exchange-Correlation Functional.
Spin-Polarized Calculation.
Magnetic Moment: (0.000000, 0.000000, 0.000000)
Total Charge: 0.000000
Fermi Temperature: 0.100000
Wave functions: Plane wave expansion
Cutoff energy: 340.000 eV
Number of coefficients (min, max): 376, 400
Using Numpy's FFT
Eigensolver: rmm-diis
XC and Coulomb potentials evaluated on a 20*20*36 grid
Interpolation: FFT
Poisson solver: FFT
Reference Energy: -246490.337208
Total number of cores used: 1
Symmetries present: 2
256 k-points: 8 x 8 x 4 Monkhorst-Pack grid
64 k-points in the Irreducible Part of the Brillouin Zone
Linear Mixing Parameter: 0.1
Pulay Mixing with 3 Old Densities
Damping of Long Wave Oscillations: 50
Convergence Criteria:
Total Energy Change: 0.0005 eV / electron
Integral of Absolute Density Change: 0.0001 electrons
Integral of Absolute Eigenstate Change: 4e-08 eV^2
Number of Atoms: 2
Number of Atomic Orbitals: 26
Number of Bands in Calculation: 21
Bands to Converge: Occupied States Only
Number of Valence Electrons: 32
log10-error: Total Iterations:
Time WFS Density Energy Fermi Poisson MagMom
iter: 1 00:19:25 +1.2 -18.293337 2 +0.0000
iter: 2 00:19:31 -0.2 -19.844631 3 -0.0000
iter: 3 00:19:37 -0.7 -20.088042 2 +0.0000
iter: 4 00:19:45 -0.5 -1.3 -19.421301 5 -0.0000
iter: 5 00:19:53 +0.7 -1.4 -17.769749 16 +0.0000
iter: 6 00:20:01 +0.3 -1.9 -19.771252 12 +0.0000
iter: 7 00:20:08 +0.5 -1.4 -18.013555 14 -0.0000
iter: 8 00:20:16 -0.7 -2.2 -18.417166 4 -0.0000
iter: 9 00:20:24 -1.1 -2.9 -18.437988 2 -0.0000
iter: 10 00:20:32 -1.0 -3.0 -18.436297 2 -0.0000
iter: 11 00:20:39 -0.9 -3.1 -18.432713 2 -0.0000
iter: 12 00:20:47 -0.9 -3.2 -18.428276 2 +0.0000
iter: 13 00:20:55 -0.8 -3.3 -18.423415 2 -0.0000
iter: 14 00:21:02 -0.7 -3.5 -18.417963 2 -0.0000
iter: 15 00:21:10 -0.6 -3.8 -18.412164 2 -0.0000
iter: 16 00:21:18 -0.6 -3.9 -18.406074 2 -0.0000
iter: 17 00:21:25 -0.5 -4.2 -18.399839 2 -0.0000
iter: 18 00:21:33 -0.5 -4.3 -18.393604 2 -0.0000
iter: 19 00:21:41 -0.4 -4.3 -18.387516 1 +0.0000
iter: 20 00:21:48 -0.4 -4.2 -18.381706 2 +0.0000
iter: 21 00:21:56 -0.3 -4.1 -18.376270 2 +0.0000
iter: 22 00:22:04 -0.3 -4.0 -18.371281 2 +0.0000
iter: 23 00:22:11 -0.3 -4.0 -18.366767 2 -0.0000
iter: 24 00:22:19 -0.3 -4.0 -18.362717 2 +0.0000
iter: 25 00:22:27 -0.2 -4.0 -18.359076 2 +0.0000
iter: 26 00:22:34 -0.2 -3.9 -18.355732 2 -0.0000
iter: 27 00:22:42 -0.2 -3.7 -18.352547 2 +0.0000
iter: 28 00:22:50 -0.2 -4.2 -18.349362 2 +0.0000
iter: 29 00:22:57 -0.2 -4.1 -18.346116 2 +0.0000
iter: 30 00:23:05 -0.2 -4.0 -18.343198 2 +0.0000
iter: 31 00:23:13 -0.2 -3.7 -18.341216 2 -0.0000
iter: 32 00:23:20 -0.2 -3.6 -18.340042 2 -0.0000
iter: 33 00:23:28 -0.2 -3.5 -18.339173 2 +0.0000
iter: 34 00:23:36 -0.2 -3.5 -18.338494 2 -0.0000
iter: 35 00:23:44 -0.2 -3.5 -18.337989 2 +0.0000
iter: 36 00:23:51 -0.2 -3.5 -18.337838 2 +0.0000
iter: 37 00:23:59 -0.2 -3.6 -18.338413 1 +0.0000
iter: 38 00:24:07 -0.2 -3.6 -18.340842 1 +0.0000
iter: 39 00:24:14 -0.2 -3.7 -18.344403 2 +0.0000
iter: 40 00:24:22 -0.2 -3.8 -18.346852 2 +0.0000
iter: 41 00:24:30 -0.2 -3.9 -18.347387 2 +0.0000
iter: 42 00:24:37 -0.2 -4.1 -18.347063 2 +0.0000
iter: 43 00:24:45 -0.2 -4.2 -18.346393 1 +0.0000
iter: 44 00:24:53 -0.2 -4.3 -18.345687 1 +0.0000
iter: 45 00:25:00 -0.2 -4.5 -18.344991 1 +0.0000
iter: 46 00:25:08 -0.2 -4.5 -18.344382 1 +0.0000
iter: 47 00:25:16 -0.2 -4.6 -18.343833 1 +0.0000
iter: 48 00:25:23 -0.2 -4.6 -18.343381 1 +0.0000
iter: 49 00:25:31 -0.2 -4.7 -18.342987 1 +0.0000
iter: 50 00:25:39 -0.2 -4.8 -18.342685 1 +0.0000
iter: 51 00:25:46 -0.2 -4.8 -18.342430 1 +0.0000
iter: 52 00:25:54 -0.2 -4.9 -18.342272 1 +0.0000
iter: 53 00:26:02 -0.2 -5.0 -18.342158 1 +0.0000
iter: 54 00:26:09 -0.2 -5.0 -18.342172 1 +0.0000
iter: 55 00:26:17 -0.2 -5.0 -18.342248 1 +0.0000
iter: 56 00:26:25 -0.2 -5.0 -18.342520 1 +0.0000
iter: 57 00:26:32 -0.2 -5.0 -18.342894 1 +0.0000
iter: 58 00:26:40 -0.2 -4.9 -18.343526 1 +0.0000
iter: 59 00:26:48 -0.2 -4.9 -18.344220 1 +0.0000
iter: 60 00:26:55 -0.2 -4.8 -18.345072 1 +0.0000
iter: 61 00:27:03 -0.2 -4.7 -18.345793 1 +0.0000
iter: 62 00:27:11 -0.2 -4.8 -18.346486 1 +0.0000
iter: 63 00:27:18 -0.2 -4.8 -18.346938 2 +0.0000
iter: 64 00:27:26 -0.2 -5.2 -18.347314 1 +0.0000
iter: 65 00:27:34 -0.2 -4.9 -18.347484 1 +0.0000
iter: 66 00:27:41 -0.2 -5.3 -18.347612 1 +0.0000
iter: 67 00:27:49 -0.2 -4.9 -18.347596 1 +0.0000
iter: 68 00:27:57 -0.2 -5.7 -18.347577 1 -0.0000
iter: 69 00:28:04 -0.2 -5.0 -18.347467 1 -0.0000
iter: 70 00:28:12 -0.2 -5.9 -18.347381 1 +0.0000
iter: 71 00:28:20 -0.2 -5.0 -18.347241 1 -0.0000
iter: 72 00:28:27 -0.2 -5.8 -18.347138 1 +0.0000
iter: 73 00:28:35 -0.2 -5.0 -18.347002 1 -0.0000
iter: 74 00:28:43 -0.2 -5.6 -18.346908 1 +0.0000
iter: 75 00:28:50 -0.2 -5.0 -18.346791 1 -0.0000
iter: 76 00:28:58 -0.2 -5.6 -18.346716 1 -0.0000
iter: 77 00:29:06 -0.2 -5.1 -18.346622 1 -0.0000
iter: 78 00:29:13 -0.2 -5.5 -18.346567 1 +0.0000
iter: 79 00:29:21 -0.2 -5.1 -18.346495 1 -0.0000
iter: 80 00:29:29 -0.2 -5.5 -18.346459 1 -0.0000
iter: 81 00:29:36 -0.2 -5.1 -18.346405 1 -0.0000
iter: 82 00:29:44 -0.2 -5.7 -18.346384 1 -0.0000
iter: 83 00:29:52 -0.2 -5.1 -18.346344 1 -0.0000
iter: 84 00:29:59 -0.2 -5.7 -18.346335 1 +0.0000
iter: 85 00:30:07 -0.2 -5.1 -18.346306 1 -0.0000
iter: 86 00:30:15 -0.2 -5.7 -18.346305 1 -0.0000
iter: 87 00:30:22 -0.2 -5.1 -18.346285 1 -0.0000
iter: 88 00:30:30 -0.2 -5.7 -18.346290 1 -0.0000
iter: 89 00:30:38 -0.2 -5.1 -18.346276 1 -0.0000
iter: 90 00:30:45 -0.2 -5.7 -18.346285 1 -0.0000
iter: 91 00:30:53 -0.2 -5.1 -18.346275 1 -0.0000
iter: 92 00:31:01 -0.2 -5.7 -18.346287 1 -0.0000
iter: 93 00:31:08 -0.2 -5.1 -18.346280 1 -0.0000
iter: 94 00:31:16 -0.2 -5.6 -18.346293 1 -0.0000
iter: 95 00:31:24 -0.2 -5.1 -18.346288 1 -0.0000
iter: 96 00:31:31 -0.2 -5.6 -18.346302 1 -0.0000
iter: 97 00:31:39 -0.2 -5.2 -18.346298 1 -0.0000
iter: 98 00:31:47 -0.2 -5.6 -18.346313 1 -0.0000
iter: 99 00:31:55 -0.2 -5.2 -18.346310 1 -0.0000
iter: 100 00:32:02 -0.2 -5.6 -18.346324 1 -0.0000
iter: 101 00:32:10 -0.2 -5.2 -18.346321 1 -0.0000
iter: 102 00:32:18 -0.2 -5.6 -18.346335 1 +0.0000
iter: 103 00:32:25 -0.2 -5.2 -18.346332 1 -0.0000
iter: 104 00:32:33 -0.2 -5.6 -18.346346 1 -0.0000
iter: 105 00:32:41 -0.2 -5.2 -18.346343 1 +0.0000
iter: 106 00:32:48 -0.2 -5.6 -18.346356 1 +0.0000
iter: 107 00:32:56 -0.2 -5.2 -18.346353 1 +0.0000
iter: 108 00:33:04 -0.2 -5.6 -18.346365 1 +0.0000
iter: 109 00:33:11 -0.2 -5.2 -18.346362 1 +0.0000
iter: 110 00:33:19 -0.2 -5.5 -18.346373 1 +0.0000
iter: 111 00:33:27 -0.2 -5.2 -18.346371 1 +0.0000
iter: 112 00:33:34 -0.2 -5.5 -18.346381 1 +0.0000
iter: 113 00:33:42 -0.2 -5.2 -18.346378 1 -0.0000
iter: 114 00:33:50 -0.2 -5.5 -18.346388 1 -0.0000
iter: 115 00:33:57 -0.2 -5.2 -18.346385 1 -0.0000
iter: 116 00:34:05 -0.2 -5.5 -18.346394 1 -0.0000
iter: 117 00:34:13 -0.2 -5.2 -18.346391 1 -0.0000
iter: 118 00:34:20 -0.2 -5.5 -18.346400 1 -0.0000
iter: 119 00:34:28 -0.2 -5.2 -18.346397 1 +0.0000
iter: 120 00:34:36 -0.2 -5.5 -18.346405 1 +0.0000
iter: 121 00:34:43 -0.2 -5.2 -18.346402 1 +0.0000
iter: 122 00:34:51 -0.2 -5.5 -18.346410 1 +0.0000
iter: 123 00:34:59 -0.2 -5.2 -18.346407 1 +0.0000
iter: 124 00:35:06 -0.2 -5.5 -18.346414 1 +0.0000
iter: 125 00:35:14 -0.2 -5.2 -18.346411 1 -0.0000
iter: 126 00:35:22 -0.2 -5.5 -18.346418 1 -0.0000
iter: 127 00:35:30 -0.2 -5.2 -18.346415 1 -0.0000
iter: 128 00:35:37 -0.2 -5.5 -18.346421 1 -0.0000
iter: 129 00:35:45 -0.2 -5.2 -18.346418 1 -0.0000
iter: 130 00:35:53 -0.2 -5.5 -18.346424 1 -0.0000
iter: 131 00:36:00 -0.2 -5.2 -18.346421 1 -0.0000
iter: 132 00:36:08 -0.2 -5.5 -18.346427 1 -0.0000
iter: 133 00:36:16 -0.2 -5.3 -18.346424 1 +0.0000
iter: 134 00:36:23 -0.2 -5.4 -18.346429 1 -0.0000
iter: 135 00:36:31 -0.2 -5.3 -18.346427 1 +0.0000
iter: 136 00:36:39 -0.2 -5.4 -18.346432 1 -0.0000
iter: 137 00:36:46 -0.2 -5.3 -18.346429 1 +0.0000
iter: 138 00:36:54 -0.2 -5.4 -18.346434 1 +0.0000
iter: 139 00:37:02 -0.2 -5.3 -18.346431 1 +0.0000
iter: 140 00:37:09 -0.2 -5.4 -18.346436 1 -0.0000
iter: 141 00:37:17 -0.2 -5.3 -18.346433 1 +0.0000
iter: 142 00:37:25 -0.2 -5.4 -18.346437 1 +0.0000
iter: 143 00:37:33 -0.2 -5.2 -18.346435 1 +0.0000
iter: 144 00:37:40 -0.2 -5.4 -18.346439 1 +0.0000
iter: 145 00:37:48 -0.2 -5.3 -18.346437 1 +0.0000
iter: 146 00:37:56 -0.2 -5.3 -18.346441 1 +0.0000
iter: 147 00:38:03 -0.2 -5.2 -18.346438 1 -0.0000
iter: 148 00:38:11 -0.2 -5.5 -18.346442 1 -0.0000
iter: 149 00:38:19 -0.2 -5.4 -18.346440 1 +0.0000
iter: 150 00:38:26 -0.2 -5.2 -18.346443 1 +0.0000
iter: 151 00:38:34 -0.2 -5.2 -18.346441 1 -0.0000
iter: 152 00:38:42 -0.2 -5.8 -18.346444 1 -0.0000
iter: 153 00:38:49 -0.2 -5.6 -18.346442 1 -0.0000
iter: 154 00:38:57 -0.2 -5.8 -18.346446 1 -0.0000
iter: 155 00:39:05 -0.2 -5.7 -18.346444 1 -0.0000
iter: 156 00:39:13 -0.2 -5.9 -18.346447 1 -0.0000
iter: 157 00:39:20 -0.2 -5.8 -18.346445 1 -0.0000
iter: 158 00:39:28 -0.2 -6.0 -18.346448 1 -0.0000
iter: 159 00:39:36 -0.2 -5.8 -18.346446 1 -0.0000
iter: 160 00:39:43 -0.2 -6.1 -18.346449 1 -0.0000
iter: 161 00:39:51 -0.2 -6.0 -18.346447 1 -0.0000
iter: 162 00:39:59 -0.2 -6.2 -18.346450 1 -0.0000
iter: 163 00:40:06 -0.2 -6.0 -18.346448 1 -0.0000
iter: 164 00:40:14 -0.2 -6.3 -18.346451 1 -0.0000
iter: 165 00:40:22 -0.2 -6.1 -18.346449 1 -0.0000
iter: 166 00:40:29 -0.2 -6.3 -18.346452 1 -0.0000
iter: 167 00:40:37 -0.2 -6.1 -18.346450 1 -0.0000
iter: 168 00:40:45 -0.2 -6.3 -18.346453 1 -0.0000
iter: 169 00:40:52 -0.2 -6.1 -18.346451 1 -0.0000
iter: 170 00:41:00 -0.2 -6.3 -18.346454 1 -0.0000
iter: 171 00:41:08 -0.2 -6.1 -18.346452 1 -0.0000
iter: 172 00:41:16 -0.2 -6.4 -18.346454 1 -0.0000
iter: 173 00:41:23 -0.2 -6.2 -18.346453 1 -0.0000
iter: 174 00:41:31 -0.2 -6.4 -18.346455 1 -0.0000
iter: 175 00:41:39 -0.2 -6.1 -18.346454 1 -0.0000
iter: 176 00:41:46 -0.2 -6.4 -18.346456 1 -0.0000
iter: 177 00:41:54 -0.2 -6.2 -18.346455 1 -0.0000
iter: 178 00:42:02 -0.2 -6.4 -18.346457 1 -0.0000
iter: 179 00:42:09 -0.2 -6.2 -18.346456 1 -0.0000
iter: 180 00:42:17 -0.2 -6.4 -18.346458 1 -0.0000
iter: 181 00:42:25 -0.2 -6.2 -18.346457 1 -0.0000
iter: 182 00:42:32 -0.2 -6.4 -18.346458 1 -0.0000
iter: 183 00:42:40 -0.2 -6.2 -18.346458 1 -0.0000
iter: 184 00:42:48 -0.2 -6.4 -18.346459 1 -0.0000
iter: 185 00:42:56 -0.2 -6.2 -18.346458 1 -0.0000
iter: 186 00:43:03 -0.2 -6.4 -18.346460 1 -0.0000
iter: 187 00:43:11 -0.2 -6.2 -18.346459 1 -0.0000
iter: 188 00:43:19 -0.2 -6.4 -18.346461 1 -0.0000
iter: 189 00:43:26 -0.2 -6.2 -18.346460 1 -0.0000
iter: 190 00:43:34 -0.2 -6.4 -18.346461 1 -0.0000
iter: 191 00:43:42 -0.2 -6.3 -18.346461 1 -0.0000
iter: 192 00:43:49 -0.2 -6.4 -18.346462 1 -0.0000
iter: 193 00:43:57 -0.2 -6.3 -18.346462 1 -0.0000
iter: 194 00:44:05 -0.2 -6.4 -18.346463 1 -0.0000
iter: 195 00:44:12 -0.2 -6.2 -18.346462 1 -0.0000
iter: 196 00:44:20 -0.2 -6.4 -18.346464 1 -0.0000
iter: 197 00:44:28 -0.2 -6.2 -18.346463 1 -0.0000
iter: 198 00:44:36 -0.2 -6.3 -18.346464 1 -0.0000
iter: 199 00:44:43 -0.2 -6.3 -18.346464 1 -0.0000
iter: 200 00:44:51 -0.2 -6.4 -18.346465 1 -0.0000
iter: 201 00:44:59 -0.2 -6.2 -18.346465 1 -0.0000
iter: 202 00:45:06 -0.2 -6.4 -18.346466 1 -0.0000
iter: 203 00:45:14 -0.2 -6.3 -18.346466 1 -0.0000
iter: 204 00:45:22 -0.2 -6.4 -18.346467 1 -0.0000
iter: 205 00:45:29 -0.2 -6.3 -18.346467 1 -0.0000
iter: 206 00:45:37 -0.2 -6.4 -18.346468 1 -0.0000
iter: 207 00:45:45 -0.2 -6.3 -18.346467 1 -0.0000
iter: 208 00:45:52 -0.2 -6.4 -18.346468 1 -0.0000
iter: 209 00:46:00 -0.2 -6.3 -18.346468 1 +0.0000
iter: 210 00:46:08 -0.2 -6.4 -18.346469 1 -0.0000
iter: 211 00:46:15 -0.2 -6.3 -18.346469 1 +0.0000
iter: 212 00:46:23 -0.2 -6.5 -18.346470 1 +0.0000
iter: 213 00:46:31 -0.2 -6.5 -18.346470 1 -0.0000
iter: 214 00:46:39 -0.2 -6.3 -18.346471 1 -0.0000
iter: 215 00:46:46 -0.2 -6.3 -18.346471 1 -0.0000
iter: 216 00:46:54 -0.2 -6.4 -18.346472 1 +0.0000
iter: 217 00:47:02 -0.2 -6.4 -18.346472 1 +0.0000
iter: 218 00:47:09 -0.2 -6.5 -18.346473 1 +0.0000
iter: 219 00:47:17 -0.2 -6.4 -18.346473 1 +0.0000
iter: 220 00:47:25 -0.2 -6.6 -18.346473 1 +0.0000
iter: 221 00:47:32 -0.2 -6.5 -18.346473 1 +0.0000
iter: 222 00:47:40 -0.2 -6.5 -18.346474 1 +0.0000
iter: 223 00:47:48 -0.2 -6.5 -18.346474 1 +0.0000
iter: 224 00:47:55 -0.2 -6.7 -18.346475 1 +0.0000
iter: 225 00:48:03 -0.2 -6.6 -18.346475 1 +0.0000
iter: 226 00:48:11 -0.2 -6.6 -18.346476 1 +0.0000
iter: 227 00:48:18 -0.2 -6.6 -18.346476 1 +0.0000
iter: 228 00:48:26 -0.2 -6.7 -18.346477 1 +0.0000
iter: 229 00:48:34 -0.2 -6.7 -18.346477 1 +0.0000
iter: 230 00:48:42 -0.2 -6.6 -18.346478 1 +0.0000
iter: 231 00:48:49 -0.2 -6.6 -18.346478 1 +0.0000
iter: 232 00:48:57 -0.2 -6.7 -18.346479 1 +0.0000
iter: 233 00:49:05 -0.2 -6.6 -18.346479 1 +0.0000
iter: 234 00:49:12 -0.2 -6.7 -18.346480 1 +0.0000
iter: 235 00:49:20 -0.2 -6.7 -18.346480 1 +0.0000
iter: 236 00:49:28 -0.2 -6.8 -18.346481 1 +0.0000
iter: 237 00:49:35 -0.2 -6.7 -18.346481 1 +0.0000
iter: 238 00:49:43 -0.2 -6.8 -18.346482 1 +0.0000
iter: 239 00:49:51 -0.2 -6.8 -18.346482 1 +0.0000
iter: 240 00:49:58 -0.2 -6.8 -18.346483 1 +0.0000
iter: 241 00:50:06 -0.2 -6.8 -18.346483 1 +0.0000
iter: 242 00:50:14 -0.2 -6.8 -18.346483 1 +0.0000
iter: 243 00:50:21 -0.2 -6.8 -18.346484 1 +0.0000
iter: 244 00:50:29 -0.2 -6.4 -18.346484 1 +0.0000
iter: 245 00:50:37 -0.2 -7.0 -18.346485 1 +0.0000
iter: 246 00:50:45 -0.2 -6.8 -18.346485 1 +0.0000
iter: 247 00:50:52 -0.2 -7.1 -18.346486 1 +0.0000
iter: 248 00:51:00 -0.2 -6.9 -18.346486 1 +0.0000
iter: 249 00:51:08 -0.2 -7.2 -18.346487 1 +0.0000
iter: 250 00:51:15 -0.2 -6.9 -18.346487 1 +0.0000
iter: 251 00:51:23 -0.2 -7.0 -18.346488 1 +0.0000
iter: 252 00:51:31 -0.2 -6.7 -18.346488 1 +0.0000
iter: 253 00:51:38 -0.2 -6.8 -18.346489 1 +0.0000
iter: 254 00:51:46 -0.2 -6.9 -18.346489 1 +0.0000
iter: 255 00:51:54 -0.2 -7.0 -18.346490 1 +0.0000
iter: 256 00:52:01 -0.2 -6.8 -18.346490 1 +0.0000
iter: 257 00:52:09 -0.2 -7.1 -18.346491 1 +0.0000
iter: 258 00:52:17 -0.2 -6.9 -18.346491 1 +0.0000
iter: 259 00:52:24 -0.2 -7.1 -18.346492 1 +0.0000
iter: 260 00:52:32 -0.2 -6.9 -18.346492 1 +0.0000
iter: 261 00:52:40 -0.2 -6.9 -18.346493 1 +0.0000
iter: 262 00:52:47 -0.2 -6.9 -18.346493 1 +0.0000
iter: 263 00:52:55 -0.2 -7.1 -18.346494 1 +0.0000
iter: 264 00:53:03 -0.2 -7.0 -18.346494 1 +0.0000
iter: 265 00:53:10 -0.2 -7.0 -18.346495 1 +0.0000
iter: 266 00:53:18 -0.2 -6.9 -18.346495 1 +0.0000
iter: 267 00:53:26 -0.2 -7.0 -18.346496 1 +0.0000
iter: 268 00:53:33 -0.2 -6.9 -18.346496 1 +0.0000
iter: 269 00:53:41 -0.2 -7.1 -18.346497 1 +0.0000
iter: 270 00:53:49 -0.2 -7.0 -18.346497 1 +0.0000
iter: 271 00:53:56 -0.2 -7.1 -18.346498 1 +0.0000
iter: 272 00:54:04 -0.2 -7.0 -18.346498 1 +0.0000
iter: 273 00:54:12 -0.2 -7.2 -18.346498 1 -0.0000
iter: 274 00:54:20 -0.2 -7.2 -18.346499 1 +0.0000
iter: 275 00:54:27 -0.2 -7.4 -18.346499 0 +0.0000
iter: 276 00:54:35 -0.2 -7.2 -18.346500 1 +0.0000
iter: 277 00:54:43 -0.2 -7.4 -18.346500 1 +0.0000
iter: 278 00:54:50 -0.2 -7.2 -18.346501 1 +0.0000
iter: 279 00:54:58 -0.2 -7.4 -18.346501 1 +0.0000
iter: 280 00:55:06 -0.2 -7.3 -18.346502 1 +0.0000
iter: 281 00:55:13 -0.2 -7.4 -18.346502 1 +0.0000
iter: 282 00:55:21 -0.2 -7.3 -18.346503 1 +0.0000
iter: 283 00:55:29 -0.2 -7.2 -18.346503 1 +0.0000
iter: 284 00:55:36 -0.2 -7.3 -18.346504 1 +0.0000
iter: 285 00:55:44 -0.2 -7.1 -18.346504 1 +0.0000
iter: 286 00:55:52 -0.2 -7.3 -18.346505 1 +0.0000
iter: 287 00:55:59 -0.2 -7.3 -18.346505 1 +0.0000
iter: 288 00:56:07 -0.2 -7.3 -18.346506 1 +0.0000
iter: 289 00:56:15 -0.2 -7.3 -18.346506 1 +0.0000
iter: 290 00:56:22 -0.2 -7.4 -18.346507 1 +0.0000
iter: 291 00:56:30 -0.2 -7.2 -18.346507 1 -0.0000
iter: 292 00:56:38 -0.2 -7.6 -18.346508 1 -0.0000
iter: 293 00:56:45 -0.2 -7.3 -18.346508 1 -0.0000
iter: 294 00:56:53 -0.2 -7.6 -18.346509 1 -0.0000
iter: 295 00:57:01 -0.2 -7.3 -18.346509 1 -0.0000
iter: 296 00:57:08 -0.2 -7.3 -18.346509 1 -0.0000
iter: 297 00:57:16 -0.2 -7.3 -18.346510 1 -0.0000
iter: 298 00:57:24 -0.2 -7.5 -18.346510 1 -0.0000
iter: 299 00:57:31 -0.2 -7.3 -18.346511 1 -0.0000
iter: 300 00:57:39 -0.2 -7.5 -18.346511 1 -0.0000
iter: 301 00:57:47 -0.2 -7.3 -18.346512 1 -0.0000
iter: 302 00:57:54 -0.2 -7.4 -18.346512 1 -0.0000
iter: 303 00:58:02 -0.2 -7.3 -18.346513 1 -0.0000
iter: 304 00:58:10 -0.2 -7.3 -18.346513 1 -0.0000
iter: 305 00:58:17 -0.2 -7.2 -18.346513 1 -0.0000
iter: 306 00:58:25 -0.2 -7.3 -18.346514 1 -0.0000
iter: 307 00:58:33 -0.2 -7.3 -18.346514 1 -0.0000
iter: 308 00:58:40 -0.2 -7.6 -18.346515 1 -0.0000
iter: 309 00:58:48 -0.2 -7.3 -18.346515 1 -0.0000
iter: 310 00:58:56 -0.2 -7.5 -18.346516 1 -0.0000
iter: 311 00:59:04 -0.2 -7.3 -18.346516 1 -0.0000
iter: 312 00:59:11 -0.2 -7.6 -18.346516 1 -0.0000
iter: 313 00:59:19 -0.2 -7.4 -18.346517 1 -0.0000
iter: 314 00:59:27 -0.2 -7.3 -18.346517 1 -0.0000
iter: 315 00:59:34 -0.2 -7.3 -18.346518 1 -0.0000
iter: 316 00:59:42 -0.2 -7.3 -18.346518 1 +0.0000
iter: 317 00:59:50 -0.2 -7.3 -18.346518 1 -0.0000
iter: 318 00:59:57 -0.2 -7.6 -18.346519 1 -0.0000
iter: 319 01:00:05 -0.2 -7.4 -18.346519 1 -0.0000
iter: 320 01:00:13 -0.2 -7.8 -18.346520 1 -0.0000
iter: 321 01:00:20 -0.2 -7.5 -18.346520 1 -0.0000
iter: 322 01:00:28 -0.2 -7.4 -18.346520 1 -0.0000
iter: 323 01:00:36 -0.2 -7.6 -18.346521 1 -0.0000
iter: 324 01:00:43 -0.2 -7.2 -18.346521 1 -0.0000
iter: 325 01:00:51 -0.2 -7.8 -18.346522 1 -0.0000
iter: 326 01:00:59 -0.2 -7.8 -18.346522 1 -0.0000
iter: 327 01:01:06 -0.2 -7.9 -18.346522 1 -0.0000
iter: 328 01:01:14 -0.2 -8.1 -18.346523 1 -0.0000
iter: 329 01:01:22 -0.2 -7.8 -18.346523 1 -0.0000
iter: 330 01:01:30 -0.2 -7.7 -18.346524 1 -0.0000
iter: 331 01:01:37 -0.2 -7.7 -18.346524 1 -0.0000
iter: 332 01:01:45 -0.2 -7.6 -18.346524 1 -0.0000
iter: 333 01:01:53 -0.2 -7.6 -18.346525 1 -0.0000
iter: 334 01:02:00 -0.2 -7.5 -18.346525 1 -0.0000
iter: 335 01:02:08 -0.2 -7.4 -18.346525 1 -0.0000
iter: 336 01:02:16 -0.2 -7.5 -18.346526 1 -0.0000
iter: 337 01:02:23 -0.2 -7.3 -18.346526 1 -0.0000
iter: 338 01:02:31 -0.2 -7.4 -18.346526 1 -0.0000
iter: 339 01:02:39 -0.2 -7.4 -18.346527 1 +0.0000
iter: 340 01:02:46 -0.2 -7.5 -18.346527 1 +0.0000
iter: 341 01:02:54 -0.2 -7.5 -18.346527 1 +0.0000
iter: 342 01:03:02 -0.2 -7.4 -18.346528 1 +0.0000
iter: 343 01:03:09 -0.2 -7.4 -18.346528 1 +0.0000
iter: 344 01:03:17 -0.2 -7.2 -18.346528 1 +0.0000
iter: 345 01:03:25 -0.2 -7.8 -18.346529 1 +0.0000
iter: 346 01:03:32 -0.2 -7.8 -18.346529 1 +0.0000
iter: 347 01:03:40 -0.2 -8.0 -18.346529 1 +0.0000
iter: 348 01:03:48 -0.2 -7.8 -18.346530 1 +0.0000
iter: 349 01:03:56 -0.2 -7.9 -18.346530 1 +0.0000
iter: 350 01:04:03 -0.2 -7.6 -18.346530 1 +0.0000
iter: 351 01:04:11 -0.2 -8.0 -18.346531 0 +0.0000
iter: 352 01:04:19 -0.2 -7.8 -18.346531 1 +0.0000
iter: 353 01:04:26 -0.2 -7.8 -18.346531 1 +0.0000
iter: 354 01:04:34 -0.2 -7.7 -18.346532 1 +0.0000
iter: 355 01:04:42 -0.2 -7.6 -18.346532 1 +0.0000
iter: 356 01:04:49 -0.2 -7.5 -18.346532 1 +0.0000
iter: 357 01:04:57 -0.2 -7.6 -18.346533 0 +0.0000
iter: 358 01:05:05 -0.2 -7.5 -18.346533 1 +0.0000
iter: 359 01:05:12 -0.2 -7.5 -18.346533 1 +0.0000
iter: 360 01:05:20 -0.2 -7.5 -18.346533 0 +0.0000
iter: 361 01:05:28 -0.2 -7.4 -18.346534 1 +0.0000
iter: 362 01:05:35 -0.2 -7.4 -18.346534 1 +0.0000
iter: 363 01:05:43 -0.2 -7.5 -18.346534 1 +0.0000
iter: 364 01:05:51 -0.2 -7.4 -18.346535 1 +0.0000
iter: 365 01:05:58 -0.2 -7.4 -18.346535 1 +0.0000
iter: 366 01:06:06 -0.2 -7.3 -18.346535 1 +0.0000
iter: 367 01:06:14 -0.2 -7.4 -18.346535 1 -0.0000
iter: 368 01:06:21 -0.2 -7.4 -18.346536 1 -0.0000
iter: 369 01:06:29 -0.2 -7.5 -18.346536 1 -0.0000
iter: 370 01:06:37 -0.2 -7.5 -18.346536 1 -0.0000
iter: 371 01:06:44 -0.2 -7.6 -18.346537 1 -0.0000
iter: 372 01:06:52 -0.2 -7.6 -18.346537 1 -0.0000
iter: 373 01:07:00 -0.2 -7.5 -18.346537 1 -0.0000
iter: 374 01:07:07 -0.2 -7.6 -18.346537 1 -0.0000
iter: 375 01:07:15 -0.2 -7.4 -18.346538 1 -0.0000
iter: 376 01:07:23 -0.2 -7.6 -18.346538 1 -0.0000
iter: 377 01:07:30 -0.2 -7.9 -18.346538 1 -0.0000
iter: 378 01:07:38 -0.2 -8.0 -18.346538 1 -0.0000
iter: 379 01:07:46 -0.2 -7.8 -18.346539 1 -0.0000
iter: 380 01:07:53 -0.2 -7.9 -18.346539 1 -0.0000
iter: 381 01:08:01 -0.2 -8.0 -18.346539 1 -0.0000
iter: 382 01:08:09 -0.2 -8.2 -18.346539 1 -0.0000
iter: 383 01:08:17 -0.2 -8.0 -18.346540 1 -0.0000
iter: 384 01:08:24 -0.2 -7.8 -18.346540 1 -0.0000
iter: 385 01:08:32 -0.2 -7.9 -18.346540 1 -0.0000
iter: 386 01:08:40 -0.2 -7.6 -18.346540 1 -0.0000
iter: 387 01:08:47 -0.2 -7.9 -18.346540 1 -0.0000
iter: 388 01:08:55 -0.2 -8.0 -18.346541 1 -0.0000
iter: 389 01:09:03 -0.2 -8.1 -18.346541 1 -0.0000
iter: 390 01:09:10 -0.2 -8.0 -18.346541 1 -0.0000
iter: 391 01:09:18 -0.2 -8.0 -18.346541 1 -0.0000
iter: 392 01:09:26 -0.2 -7.9 -18.346542 1 -0.0000
iter: 393 01:09:33 -0.2 -7.7 -18.346542 1 -0.0000
iter: 394 01:09:41 -0.2 -7.8 -18.346542 1 -0.0000
iter: 395 01:09:49 -0.2 -7.7 -18.346542 1 -0.0000
iter: 396 01:09:56 -0.2 -7.6 -18.346542 1 -0.0000
iter: 397 01:10:04 -0.2 -7.8 -18.346543 1 -0.0000
iter: 398 01:10:12 -0.2 -7.7 -18.346543 1 -0.0000
iter: 399 01:10:19 -0.2 -7.7 -18.346543 1 -0.0000
iter: 400 01:10:27 -0.2 -7.6 -18.346543 1 -0.0000
iter: 401 01:10:35 -0.2 -7.6 -18.346543 1 -0.0000
iter: 402 01:10:43 -0.2 -7.5 -18.346544 1 -0.0000
iter: 403 01:10:50 -0.2 -7.9 -18.346544 1 -0.0000
iter: 404 01:10:58 -0.2 -8.1 -18.346544 1 -0.0000
iter: 405 01:11:06 -0.2 -8.1 -18.346544 1 -0.0000
iter: 406 01:11:13 -0.2 -8.1 -18.346544 1 -0.0000
iter: 407 01:11:21 -0.2 -8.0 -18.346545 1 -0.0000
iter: 408 01:11:29 -0.2 -8.1 -18.346545 1 -0.0000
iter: 409 01:11:36 -0.2 -7.9 -18.346545 1 -0.0000
iter: 410 01:11:44 -0.2 -8.0 -18.346545 1 -0.0000
iter: 411 01:11:52 -0.2 -8.3 -18.346545 1 -0.0000
iter: 412 01:11:59 -0.2 -8.1 -18.346546 1 -0.0000
iter: 413 01:12:07 -0.2 -8.1 -18.346546 1 -0.0000
iter: 414 01:12:15 -0.2 -7.9 -18.346546 1 -0.0000
iter: 415 01:12:22 -0.2 -7.8 -18.346546 1 -0.0000
iter: 416 01:12:30 -0.2 -7.9 -18.346546 1 -0.0000
iter: 417 01:12:38 -0.2 -7.8 -18.346547 1 -0.0000
iter: 418 01:12:46 -0.2 -7.9 -18.346547 1 -0.0000
iter: 419 01:12:53 -0.2 -7.9 -18.346547 1 -0.0000
iter: 420 01:13:01 -0.2 -8.1 -18.346547 1 +0.0000
iter: 421 01:13:09 -0.2 -8.1 -18.346547 1 +0.0000
iter: 422 01:13:16 -0.2 -8.1 -18.346547 1 -0.0000
iter: 423 01:13:24 -0.2 -7.9 -18.346548 1 +0.0000
iter: 424 01:13:32 -0.2 -8.1 -18.346548 1 +0.0000
iter: 425 01:13:39 -0.2 -8.1 -18.346548 1 +0.0000
iter: 426 01:13:47 -0.2 -7.9 -18.346548 1 +0.0000
iter: 427 01:13:55 -0.2 -7.9 -18.346548 1 +0.0000
iter: 428 01:14:02 -0.2 -7.8 -18.346548 1 +0.0000
iter: 429 01:14:10 -0.2 -7.9 -18.346549 1 +0.0000
iter: 430 01:14:18 -0.2 -7.9 -18.346549 1 +0.0000
iter: 431 01:14:25 -0.2 -8.0 -18.346549 1 +0.0000
iter: 432 01:14:33 -0.2 -8.2 -18.346549 1 +0.0000
iter: 433 01:14:41 -0.2 -8.3 -18.346549 1 +0.0000
iter: 434 01:14:48 -0.2 -8.2 -18.346549 1 +0.0000
iter: 435 01:14:56 -0.2 -8.3 -18.346549 0 +0.0000
iter: 436 01:15:04 -0.2 -8.4 -18.346550 1 +0.0000
iter: 437 01:15:12 -0.2 -8.3 -18.346550 1 +0.0000
iter: 438 01:15:19 -0.2 -8.2 -18.346550 1 +0.0000
iter: 439 01:15:27 -0.2 -8.3 -18.346550 1 +0.0000
iter: 440 01:15:35 -0.2 -8.1 -18.346550 1 -0.0000
iter: 441 01:15:42 -0.2 -8.1 -18.346550 1 -0.0000
iter: 442 01:15:50 -0.2 -8.2 -18.346550 0 -0.0000
iter: 443 01:15:58 -0.2 -8.1 -18.346551 1 +0.0000
iter: 444 01:16:05 -0.2 -7.8 -18.346551 1 -0.0000
iter: 445 01:16:13 -0.2 -8.0 -18.346551 1 -0.0000
iter: 446 01:16:21 -0.2 -8.0 -18.346551 1 -0.0000
iter: 447 01:16:28 -0.2 -7.9 -18.346551 1 -0.0000
iter: 448 01:16:36 -0.2 -7.9 -18.346551 1 -0.0000
iter: 449 01:16:44 -0.2 -8.0 -18.346551 1 -0.0000
iter: 450 01:16:52 -0.2 -7.9 -18.346552 1 -0.0000
iter: 451 01:16:59 -0.2 -8.0 -18.346552 1 -0.0000
iter: 452 01:17:07 -0.2 -7.8 -18.346552 1 -0.0000
iter: 453 01:17:15 -0.2 -7.8 -18.346552 1 -0.0000
iter: 454 01:17:22 -0.2 -7.9 -18.346552 1 -0.0000
iter: 455 01:17:30 -0.2 -8.2 -18.346552 0 -0.0000
iter: 456 01:17:38 -0.2 -8.3 -18.346552 1 -0.0000
iter: 457 01:17:45 -0.2 -8.3 -18.346552 1 -0.0000
iter: 458 01:17:53 -0.2 -8.4 -18.346553 0 -0.0000
iter: 459 01:18:01 -0.2 -8.4 -18.346553 1 -0.0000
iter: 460 01:18:08 -0.2 -8.7 -18.346553 1 -0.0000
iter: 461 01:18:16 -0.2 -8.5 -18.346553 1 -0.0000
iter: 462 01:18:24 -0.2 -8.2 -18.346553 1 -0.0000
iter: 463 01:18:31 -0.2 -8.3 -18.346553 0 -0.0000
iter: 464 01:18:39 -0.2 -8.1 -18.346553 1 -0.0000
iter: 465 01:18:47 -0.2 -8.1 -18.346553 1 -0.0000
iter: 466 01:18:54 -0.2 -8.2 -18.346553 1 -0.0000
iter: 467 01:19:02 -0.2 -8.3 -18.346554 1 -0.0000
iter: 468 01:19:10 -0.2 -8.1 -18.346554 1 -0.0000
iter: 469 01:19:18 -0.2 -8.2 -18.346554 1 -0.0000
iter: 470 01:19:25 -0.2 -8.4 -18.346554 1 -0.0000
iter: 471 01:19:33 -0.2 -8.4 -18.346554 1 -0.0000
iter: 472 01:19:41 -0.2 -8.2 -18.346554 1 -0.0000
iter: 473 01:19:48 -0.2 -8.4 -18.346554 0 -0.0000
iter: 474 01:19:56 -0.2 -8.4 -18.346554 1 -0.0000
iter: 475 01:20:04 -0.2 -8.8 -18.346554 0 -0.0000
iter: 476 01:20:11 -0.2 -8.4 -18.346555 1 -0.0000
iter: 477 01:20:19 -0.2 -8.4 -18.346555 1 -0.0000
iter: 478 01:20:27 -0.2 -8.4 -18.346555 1 -0.0000
iter: 479 01:20:34 -0.2 -8.4 -18.346555 1 -0.0000
iter: 480 01:20:42 -0.2 -8.4 -18.346555 1 -0.0000
iter: 481 01:20:50 -0.2 -8.4 -18.346555 1 -0.0000
iter: 482 01:20:57 -0.2 -8.4 -18.346555 1 -0.0000
iter: 483 01:21:05 -0.2 -8.3 -18.346555 1 -0.0000
iter: 484 01:21:13 -0.2 -8.3 -18.346555 1 -0.0000
iter: 485 01:21:20 -0.2 -8.5 -18.346555 1 -0.0000
iter: 486 01:21:28 -0.2 -8.4 -18.346556 1 -0.0000
iter: 487 01:21:36 -0.2 -8.2 -18.346556 1 -0.0000
iter: 488 01:21:44 -0.2 -8.2 -18.346556 1 -0.0000
iter: 489 01:21:51 -0.2 -8.2 -18.346556 1 -0.0000
iter: 490 01:21:59 -0.2 -8.0 -18.346556 1 -0.0000
iter: 491 01:22:07 -0.2 -7.9 -18.346556 1 -0.0000
iter: 492 01:22:14 -0.2 -7.8 -18.346556 1 -0.0000
iter: 493 01:22:22 -0.2 -8.0 -18.346556 1 -0.0000
iter: 494 01:22:30 -0.2 -7.7 -18.346556 1 -0.0000
iter: 495 01:22:37 -0.2 -7.7 -18.346556 1 -0.0000
iter: 496 01:22:45 -0.2 -7.9 -18.346557 1 -0.0000
iter: 497 01:22:53 -0.2 -8.1 -18.346557 1 -0.0000
iter: 498 01:23:00 -0.2 -8.1 -18.346557 1 -0.0000
iter: 499 01:23:08 -0.2 -8.0 -18.346557 1 -0.0000
iter: 500 01:23:16 -0.2 -8.0 -18.346557 1 -0.0000
Memory usage: 140.47 MB
============================================================
Timing: incl. excl.
============================================================
Initialization: 9.325 1.265 0.0% |
Hamiltonian: 0.564 0.004 0.0% |
Atomic: 0.528 0.001 0.0% |
XC Correction: 0.527 0.527 0.0% |
Communicate energies: 0.000 0.000 0.0% |
Initialize Hamiltonian: 0.000 0.000 0.0% |
Poisson: 0.000 0.000 0.0% |
XC 3D grid: 0.032 0.032 0.0% |
LCAO initialization: 7.477 0.226 0.0% |
LCAO eigensolver: 2.062 0.013 0.0% |
Atomic Hamiltonian: 0.034 0.034 0.0% |
Calculate projections: 0.011 0.011 0.0% |
Distribute overlap matrix: 0.006 0.006 0.0% |
Orbital Layouts: 0.090 0.090 0.0% |
Potential matrix: 1.149 1.149 0.0% |
Sum over cells: 0.760 0.760 0.0% |
LCAO to grid: 3.320 3.320 0.1% |
Set positions (LCAO WFS): 1.868 0.003 0.0% |
Basic WFS set positions: 0.000 0.000 0.0% |
Basis functions set positions: 0.000 0.000 0.0% |
TCI: Calculate S, T, P: 1.865 1.865 0.0% |
PWDescriptor: 0.019 0.019 0.0% |
SCF-cycle: 3838.442 13.567 0.4% |
Density: 547.546 0.021 0.0% |
Atomic density matrices: 7.198 7.198 0.2% |
Mix: 4.532 4.532 0.1% |
Multipole moments: 0.040 0.040 0.0% |
Pseudo density: 535.755 535.029 13.9% |-----|
Symmetrize density: 0.726 0.726 0.0% |
Hamiltonian: 338.693 2.198 0.1% |
Atomic: 315.490 0.355 0.0% |
XC Correction: 315.134 315.134 8.2% |--|
Communicate energies: 0.009 0.009 0.0% |
Poisson: 0.100 0.100 0.0% |
XC 3D grid: 20.896 20.896 0.5% |
Orthonormalize: 184.355 4.800 0.1% |
Band Layouts: 7.092 0.916 0.0% |
Inverse Cholesky: 6.176 6.176 0.2% |
calc_s_matrix: 44.934 44.934 1.2% |
projections: 92.123 92.123 2.4% ||
rotate_psi: 35.406 35.406 0.9% |
RMM-DIIS: 1835.078 1312.522 34.1% |-------------|
precondition: 310.823 310.823 8.1% |--|
projections: 211.734 211.734 5.5% |-|
Subspace diag: 919.203 6.509 0.2% |
Band Layouts: 23.557 1.765 0.0% |
Diagonalize: 19.947 19.947 0.5% |
Distribute results: 1.845 1.845 0.0% |
calc_h_matrix: 824.525 824.525 21.4% |--------|
rotate_psi: 64.612 64.612 1.7% ||
Other: 0.006 0.006 0.0% |
============================================================
Total: 3847.773 100.0%
============================================================
date: Sun Nov 18 01:23:18 2012
-------------- next part --------------
___ ___ ___ _ _ _
| | |_ | | | |
| | | | | . | | | |
|__ | _|___|_____| 0.9.1.9672
|___|_|
User: dulak at a017.dcsc.fysik.dtu.dk
Date: Fri Nov 23 18:09:15 2012
Arch: x86_64
Pid: 31783
Dir: /home/niflheim/dulak/fedora16/gpaw/gpaw
ase: /home/niflheim/dulak/fedora16/ase/ase (version 3.6.1.2771:2810M)
numpy: /opt/numpy/1.3.0/1.el5.fys.gfortran.4.1.2.python2.4.acml.4.0.1.acml.4.0.1/lib64/python2.4/site-packages/numpy (version 1.3.0)
units: Angstrom and eV
cores: 4
Memory estimate
---------------
Process memory now: 159.45 MiB
Calculator 422.66 MiB
Density 5.55 MiB
Arrays 2.78 MiB
Localized functions 2.13 MiB
Mixer 0.64 MiB
Hamiltonian 1.86 MiB
Arrays 1.82 MiB
XC 0.00 MiB
Poisson 0.00 MiB
vbar 0.04 MiB
Wavefunctions 415.25 MiB
Arrays psit_nG 293.34 MiB
Eigensolver 1.01 MiB
Projectors 108.68 MiB
Overlap op 0.81 MiB
PW-descriptor 11.40 MiB
Positions:
0 Ru 0.0000 0.0000 0.0000
1 Ru 1.3360 0.7714 2.1072
Ru
Ru
Unit Cell:
Periodic X Y Z Points Spacing
--------------------------------------------------------------------
1. axis: yes 2.672078 0.000000 0.000000 20 0.1157
2. axis: yes 1.336039 2.314087 0.000000 20 0.1157
3. axis: yes 0.000000 0.000000 4.214490 35 0.1204
Ru-setup:
name : Ruthenium
id : cea3d87f97533b0ad6ca18049f54ff98
Z : 44
valence: 16
core : 28
charge : 0.0
file : /home/camp/dulak/fedora16/gpaw/doc/setups/gpaw-setups-0.9.9672.no_empty_p_vhigh/Ru.PBE
cutoffs: 1.23(comp), 2.16(filt), 1.30(core), lmax=2
valence states:
energy radius
4s(2) -76.316 1.281
5s(1) -4.236 1.281
4p(6) -46.423 1.286
4d(7) -5.203 1.254
*p 25.404 1.286
*d 22.008 1.254
Using partial waves for Ru as LCAO basis
Using the PBE Exchange-Correlation Functional.
Spin-Paired Calculation
Total Charge: 0.000000
Fermi Temperature: 0.060000
Wave functions: Plane wave expansion
Cutoff energy: 1249.479 eV
Number of coefficients (min, max): 2583, 2648
Using Numpy's FFT
Eigensolver: rmm-diis
XC and Coulomb potentials evaluated on a 40*40*70 grid
Interpolation: FFT
Poisson solver: FFT
Reference Energy: -246490.337208
Total number of cores used: 4
Parallelization over k-points: 4
Symmetries present: 2
5808 k-points: 22 x 22 x 12 Monkhorst-Pack grid
1452 k-points in the Irreducible Part of the Brillouin Zone
Linear Mixing Parameter: 0.1
Pulay Mixing with 3 Old Densities
Damping of Long Wave Oscillations: 50
Convergence Criteria:
Total Energy Change: 0.0005 eV / electron
Integral of Absolute Density Change: 0.0001 electrons
Integral of Absolute Eigenstate Change: 4e-08 eV^2
Number of Atoms: 2
Number of Atomic Orbitals: 20
Number of Bands in Calculation: 20
Bands to Converge: Occupied States Only
Number of Valence Electrons: 32
log10-error: Total Iterations:
Time WFS Density Energy Fermi Poisson
iter: 1 18:10:44 +1.6 -16.211815 2
iter: 2 18:11:33 +1.6 -15.577181 5
iter: 3 18:12:23 +1.8 -13.362547 2
iter: 4 18:13:25 +2.0 -1.9 -8.977792 3
iter: 5 18:14:26 +2.3 -1.8 -0.912822 5
iter: 6 18:15:28 +2.4 -1.6 12.559175 12
-------------- next part --------------
___ ___ ___ _ _ _
| | |_ | | | |
| | | | | . | | | |
|__ | _|___|_____| 0.9.1.9672
|___|_|
User: dulak at a017.dcsc.fysik.dtu.dk
Date: Fri Nov 23 18:06:37 2012
Arch: x86_64
Pid: 31235
Dir: /home/niflheim/dulak/fedora16/gpaw/gpaw
ase: /home/niflheim/dulak/fedora16/ase/ase (version 3.6.1.2771:2810M)
numpy: /opt/numpy/1.3.0/1.el5.fys.gfortran.4.1.2.python2.4.acml.4.0.1.acml.4.0.1/lib64/python2.4/site-packages/numpy (version 1.3.0)
units: Angstrom and eV
cores: 4
Memory estimate
---------------
Process memory now: 32.04 MiB
Calculator 947.31 MiB
Density 26.65 MiB
Arrays 1.62 MiB
Localized functions 24.65 MiB
Mixer 0.38 MiB
Hamiltonian 3.89 MiB
Arrays 1.06 MiB
XC 0.00 MiB
Poisson 1.21 MiB
vbar 1.61 MiB
Wavefunctions 916.76 MiB
Arrays psit_nG 907.50 MiB
Eigensolver 3.13 MiB
Projectors 3.63 MiB
Overlap op 2.51 MiB
Positions:
0 Ru 0.0000 0.0000 0.0000
1 Ru 1.3360 0.7714 2.1072
Ru
Ru
Unit Cell:
Periodic X Y Z Points Spacing
--------------------------------------------------------------------
1. axis: yes 2.672078 0.000000 0.000000 16 0.1446
2. axis: yes 1.336039 2.314087 0.000000 16 0.1446
3. axis: yes 0.000000 0.000000 4.214490 32 0.1317
Ru-setup:
name : Ruthenium
id : cea3d87f97533b0ad6ca18049f54ff98
Z : 44
valence: 16
core : 28
charge : 0.0
file : /home/camp/dulak/fedora16/gpaw/doc/setups/gpaw-setups-0.9.9672.no_empty_p_vhigh/Ru.PBE
cutoffs: 1.23(comp), 2.16(filt), 1.30(core), lmax=2
valence states:
energy radius
4s(2) -76.316 1.281
5s(1) -4.236 1.281
4p(6) -46.423 1.286
4d(7) -5.203 1.254
*p 25.404 1.286
*d 22.008 1.254
Using partial waves for Ru as LCAO basis
Using the PBE Exchange-Correlation Functional.
Spin-Paired Calculation
Total Charge: 0.000000
Fermi Temperature: 0.060000
Wave functions: Uniform real-space grid
Kinetic energy operator: 8*3+1=25 point O(h^6) finite-difference Laplacian
Eigensolver: rmm-diis
XC and Coulomb potentials evaluated on a 32*32*64 grid
Interpolation: tri-quintic (5. degree polynomial)
Poisson solver: Jacobi solver with 5 multi-grid levels
Stencil: 8*3+1=25 point O(h^6) finite-difference Laplacian
Reference Energy: -246490.337208
Total number of cores used: 4
Parallelization over k-points: 4
MatrixOperator buffer_size: default value or
see value of nblock in input file
Diagonalizer layout: Serial LAPACK
Orthonormalizer layout: Serial LAPACK
Symmetries present: 2
5808 k-points: 22 x 22 x 12 Monkhorst-Pack grid
1452 k-points in the Irreducible Part of the Brillouin Zone
Linear Mixing Parameter: 0.1
Pulay Mixing with 3 Old Densities
Damping of Long Wave Oscillations: 50
Convergence Criteria:
Total Energy Change: 0.0005 eV / electron
Integral of Absolute Density Change: 0.0001 electrons
Integral of Absolute Eigenstate Change: 4e-08 eV^2
Number of Atoms: 2
Number of Atomic Orbitals: 20
Number of Bands in Calculation: 20
Bands to Converge: Occupied States Only
Number of Valence Electrons: 32
log10-error: Total Iterations:
Time WFS Density Energy Fermi Poisson
iter: 1 18:08:49 +1.6 -16.211170 2 10
iter: 2 18:10:27 +1.6 -15.570358 4
iter: 3 18:12:07 +1.8 -13.643835 3
iter: 4 18:13:48 +2.0 -1.9 -9.914338 3 5
iter: 5 18:15:28 +2.3 -1.9 -3.308482 4 5
iter: 6 18:17:06 +2.5 -1.7 7.543165 6 6
iter: 7 18:18:41 +2.5 -1.5 20.322542 13 6
iter: 8 18:20:16 +2.5 -1.2 35.017372 23 7
iter: 9 18:21:52 +2.5 -1.2 49.743160 45 7
More information about the gpaw-users
mailing list